
大數(shù)據(jù)是什么意思_數(shù)據(jù)分析師
大數(shù)據(jù)是什么意思?下面我們會(huì)詳細(xì)介紹。
大數(shù)據(jù)-百度百科
大數(shù)據(jù)(big data,mega data),或稱(chēng)巨量資料,指的是需要新處理模式才能具有更強(qiáng)的決策力、洞察力和流程優(yōu)化能力的海量、高增長(zhǎng)率和多樣化的信息資產(chǎn)。
在維克托·邁爾-舍恩伯格及肯尼斯·庫(kù)克耶編寫(xiě)的《大數(shù)據(jù)時(shí)代》 中大數(shù)據(jù)指不用隨機(jī)分析法(抽樣調(diào)查)這樣的捷徑,而采用所有數(shù)據(jù)進(jìn)行分析處理。大數(shù)據(jù)的4V特點(diǎn):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價(jià)值)。
對(duì)于“大數(shù)據(jù)”(Big data)研究機(jī)構(gòu)Gartner給出了這樣的定義?!按髷?shù)據(jù)”是需要新處理模式才能具有更強(qiáng)的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力的海量、高增長(zhǎng)率和多樣化的信息資產(chǎn)。
大數(shù)據(jù)技術(shù)的戰(zhàn)略意義不在于掌握龐大的數(shù)據(jù)信息,而在于對(duì)這些含有意義的數(shù)據(jù)進(jìn)行專(zhuān)業(yè)化處理。換言之,如果把大數(shù)據(jù)比作一種產(chǎn)業(yè),那么這種產(chǎn)業(yè)實(shí)現(xiàn)盈利的關(guān)鍵,在于提高對(duì)數(shù)據(jù)的“加工能力”,通過(guò)“加工”實(shí)現(xiàn)數(shù)據(jù)的“增值”。
從技術(shù)上看,大數(shù)據(jù)與云計(jì)算的關(guān)系就像一枚硬幣的正反面一樣密不可分。大數(shù)據(jù)必然無(wú)法用單臺(tái)的計(jì)算機(jī)進(jìn)行處理,必須采用分布式架構(gòu)。它的特色在于對(duì)海量數(shù)據(jù)進(jìn)行分布式數(shù)據(jù)挖掘,但它必須依托云計(jì)算的分布式處理、分布式數(shù)據(jù)庫(kù)和云存儲(chǔ)、虛擬化技術(shù)。
隨著云時(shí)代的來(lái)臨,大數(shù)據(jù)(Big data)也吸引了越來(lái)越多的關(guān)注?!吨婆_(tái)》的分析師團(tuán)隊(duì)認(rèn)為,大數(shù)據(jù)(Big data)通常用來(lái)形容一個(gè)公司創(chuàng)造的大量非結(jié)構(gòu)化數(shù)據(jù)和半結(jié)構(gòu)化數(shù)據(jù),這些數(shù)據(jù)在下載到關(guān)系型數(shù)據(jù)庫(kù)用于分析時(shí)會(huì)花費(fèi)過(guò)多時(shí)間和金錢(qián)。大數(shù)據(jù)分析常和云計(jì)算聯(lián)系到一起,因?yàn)閷?shí)時(shí)的大型數(shù)據(jù)集分析需要像MapReduce一樣的框架來(lái)向數(shù)十、數(shù)百或甚至數(shù)千的電腦分配工作。
大數(shù)據(jù)需要特殊的技術(shù),以有效地處理大量的容忍經(jīng)過(guò)時(shí)間內(nèi)的數(shù)據(jù)。適用于大數(shù)據(jù)的技術(shù),包括大規(guī)模并行處理(MPP)數(shù)據(jù)庫(kù)、數(shù)據(jù)挖掘電網(wǎng)、分布式文件系統(tǒng)、分布式數(shù)據(jù)庫(kù)、云計(jì)算平臺(tái)、互聯(lián)網(wǎng)和可擴(kuò)展的存儲(chǔ)系統(tǒng)。
大數(shù)據(jù)-維基百科
大數(shù)據(jù)(英語(yǔ):Big data或Megadata),或稱(chēng)巨量數(shù)據(jù)、海量數(shù)據(jù)、大資料,指的是所涉及的數(shù)據(jù)量規(guī)模巨大到無(wú)法通過(guò)人工,在合理時(shí)間內(nèi)達(dá)到截取、管理、處理、并整理成為人類(lèi)所能解讀的信息[3][4]。在總數(shù)據(jù)量相同的情況下,與個(gè)別分析獨(dú)立的小型數(shù)據(jù)集(data set)相比,將各個(gè)小型數(shù)據(jù)集合并后進(jìn)行分析可得出許多額外的信息和數(shù)據(jù)關(guān)系性,可用來(lái)察覺(jué)商業(yè)趨勢(shì)、判定研究質(zhì)量、避免疾病擴(kuò)散、打擊犯罪或測(cè)定實(shí)時(shí)交通路況等;這樣的用途正是大型數(shù)據(jù)集盛行的原因。
截至2012年,技術(shù)上可在合理時(shí)間內(nèi)分析處理的數(shù)據(jù)集大小單位為艾字節(jié)(exabytes)。在許多領(lǐng)域,由于數(shù)據(jù)集過(guò)度龐大,科學(xué)家經(jīng)常在分析處理上遭遇限制和阻礙;這些領(lǐng)域包括氣象學(xué)、基因組學(xué)[9]、神經(jīng)網(wǎng)絡(luò)體學(xué)、復(fù)雜的物理模擬,以及生物和環(huán)境研究。這樣的限制也對(duì)網(wǎng)絡(luò)搜索、金融與經(jīng)濟(jì)信息學(xué)造成影響。數(shù)據(jù)集大小增長(zhǎng)的部分原因來(lái)自于信息持續(xù)從各種來(lái)源被廣泛收集,這些來(lái)源包括搭載感測(cè)設(shè)備的移動(dòng)設(shè)備、高空感測(cè)科技(遙感)、軟件記錄、相機(jī)、麥克風(fēng)、無(wú)線射頻辨識(shí)(RFID)和無(wú)線感測(cè)網(wǎng)絡(luò)。自1980年代起,現(xiàn)代科技可存儲(chǔ)數(shù)據(jù)的容量每40個(gè)月即增加一倍;截至2012年,全世界每天產(chǎn)生2.5艾字節(jié)(2.5×1018)的數(shù)據(jù)。
大數(shù)據(jù)幾乎無(wú)法使用大多數(shù)的數(shù)據(jù)庫(kù)管理系統(tǒng)處理,而必須使用“在數(shù)十、數(shù)百甚至數(shù)千臺(tái)服務(wù)器上同時(shí)平行運(yùn)行的軟件”。大數(shù)據(jù)的定義取決于持有數(shù)據(jù)組的機(jī)構(gòu)之能力,以及其平常用來(lái)處理分析數(shù)據(jù)的軟件之能力?!皩?duì)某些組織來(lái)說(shuō),第一次面對(duì)數(shù)百GB的數(shù)據(jù)集可能讓他們需要重新思考數(shù)據(jù)管理的選項(xiàng)。對(duì)于其他組織來(lái)說(shuō),數(shù)據(jù)集可能需要達(dá)到數(shù)十或數(shù)百兆字節(jié)才會(huì)對(duì)他們?cè)斐衫_?!?/span>
隨著大數(shù)據(jù)被越來(lái)越多的提及,有些人驚呼大數(shù)據(jù)時(shí)代已經(jīng)到來(lái)了,2012年《紐約時(shí)報(bào)》的一篇專(zhuān)欄中寫(xiě)到,“大數(shù)據(jù)”時(shí)代已經(jīng)降臨,在商業(yè)、經(jīng)濟(jì)及其他領(lǐng)域中,決策將日益基于數(shù)據(jù)和分析而作出,而并非基于經(jīng)驗(yàn)和直覺(jué)。但是并不是所有人都對(duì)big data感興趣,有些人甚至認(rèn)為這是商學(xué)院或咨詢公司用來(lái)嘩眾取寵的buzzword,看起來(lái)很新穎,但只是把傳統(tǒng)重新包裝,之前在學(xué)術(shù)研究或者政策決策中也有海量數(shù)據(jù)的支撐,大數(shù)據(jù)并不是一件新興事物。
大數(shù)據(jù)時(shí)代的來(lái)臨帶來(lái)無(wú)數(shù)的機(jī)遇,但是與此同時(shí)個(gè)人或機(jī)構(gòu)的隱私權(quán)也極有可能受到?jīng)_擊,大數(shù)據(jù)包含了各種個(gè)人信息數(shù)據(jù),現(xiàn)有的隱私保護(hù)法律或政策無(wú)力解決這些新出現(xiàn)的問(wèn)題。有人提出,大數(shù)據(jù)時(shí)代,個(gè)人是否擁有“被遺忘權(quán)”,被遺忘權(quán)即是否有權(quán)利要求數(shù)據(jù)商不保留自己的某些信息,大數(shù)據(jù)時(shí)代信息為某些互聯(lián)網(wǎng)巨頭所控制,但是數(shù)據(jù)商收集任何數(shù)據(jù)未必都獲得用戶的許可,其對(duì)數(shù)據(jù)的控制權(quán)不具有合法性。2014年5月13日歐盟法院就“被遺忘權(quán)”(right to be forgotten)一案作出裁定,判決Google應(yīng)根據(jù)用戶請(qǐng)求刪除不完整的、無(wú)關(guān)緊要的、不相關(guān)的數(shù)據(jù)以保證數(shù)據(jù)不出現(xiàn)在搜索結(jié)果中。這說(shuō)明在大數(shù)據(jù)時(shí)代,加強(qiáng)對(duì)用戶個(gè)人權(quán)利的尊重才是時(shí)勢(shì)所趨的潮流。
大數(shù)據(jù)的應(yīng)用
大數(shù)據(jù)應(yīng)用在生活中可以幫助我們獲取到有用的價(jià)值。
隨著大數(shù)據(jù)的應(yīng)用越來(lái)越廣泛,應(yīng)用的行業(yè)也越來(lái)越低,我們每日都可以看到大數(shù)據(jù)的一些新穎的應(yīng)用,從而幫助人們從中獲取到真正有用的價(jià)值。許多組織或者個(gè)人都會(huì)受到大數(shù)據(jù)的剖析影響,但是大數(shù)據(jù)是怎樣幫助人們挖掘出有價(jià)值的信息呢?下面就讓我們一起來(lái)看看九個(gè)價(jià)值極度高的大數(shù)據(jù)的應(yīng)用,這些都是大數(shù)據(jù)在剖析應(yīng)用上的關(guān)鍵領(lǐng)域:
1.理解客戶、滿足客戶服務(wù)需求
大數(shù)據(jù)的應(yīng)用現(xiàn)在在這領(lǐng)域是最廣為人知的。重點(diǎn)是怎樣應(yīng)用大數(shù)據(jù)更好的了解客戶以及他們的喜好和行為。企業(yè)極度喜歡搜集社交方面的數(shù)據(jù)、瀏覽器的日志、剖析出文本和傳感器的數(shù)據(jù),為了更加全面的了解客戶。在通常情況下,創(chuàng)建出數(shù)據(jù)模型進(jìn)行預(yù)測(cè)。好比美國(guó)的著名零售商Target就是通過(guò)大數(shù)據(jù)的剖析,獲得有價(jià)值的信息,精準(zhǔn)得預(yù)測(cè)到客戶在什么時(shí)間想要小孩。另外,通過(guò)大數(shù)據(jù)的應(yīng)用,電信公司可以更好預(yù)測(cè)出流失的客戶,沃爾瑪則更加精準(zhǔn)的預(yù)測(cè)哪個(gè)產(chǎn)品會(huì)大賣(mài),汽車(chē)保險(xiǎn)行業(yè)會(huì)了解客戶的需求和駕駛水平,政府也能了解到選民的偏好。
2.業(yè)務(wù)流程優(yōu)化
大數(shù)據(jù)也更多的幫助業(yè)務(wù)流程的優(yōu)化。可以通過(guò)利用社交媒體數(shù)據(jù)、網(wǎng)絡(luò)搜索以及天氣預(yù)告挖掘出有價(jià)值的數(shù)據(jù),其中大數(shù)據(jù)的應(yīng)用最廣泛的就是供應(yīng)鏈以及配送路線的優(yōu)化。在這2個(gè)方面,地理定位和無(wú)線電頻率的識(shí)別追蹤貨物和送貨車(chē),利用實(shí)時(shí)交通路線數(shù)據(jù)制訂更加優(yōu)化的路線。人力資源業(yè)務(wù)也通過(guò)大數(shù)據(jù)的剖析來(lái)進(jìn)行改良,這其中就包括了人才招聘的優(yōu)化。
3.大數(shù)據(jù)正在改善我們的生活
大數(shù)據(jù)不但單只是應(yīng)用于企業(yè)和政府,同樣也適用我們生活當(dāng)中的每個(gè)人。我們可以利用穿著的裝備(如智能手表或者智能手環(huán))生成最新的數(shù)據(jù),這讓我們可以憑據(jù)我們熱量的消耗以及睡眠模式來(lái)進(jìn)行追蹤。而且還利用利用大數(shù)據(jù)剖析來(lái)尋找屬于我們的愛(ài)情,大多數(shù)時(shí)間交友網(wǎng)站就是大數(shù)據(jù)應(yīng)用工具來(lái)幫助需要的人匹配合適的對(duì)象。
4.提高醫(yī)療和研發(fā)
大數(shù)據(jù)剖析應(yīng)用的計(jì)算能力可以讓我們能夠在幾分鐘內(nèi)就可以解碼整個(gè)DNA。而且讓我們可以制訂出最新的治療方案。同時(shí)可以更好的去理解和預(yù)測(cè)疾病。就好像人們戴上智能手表等可以形成的數(shù)據(jù)一樣,大數(shù)據(jù)同樣可以幫助病人對(duì)于病情進(jìn)行更好的治療。大數(shù)據(jù)技術(shù)現(xiàn)在已經(jīng)在醫(yī)院應(yīng)用監(jiān)視早產(chǎn)嬰兒和患病嬰兒的情況,通過(guò)記錄和剖析嬰兒的心跳,醫(yī)生針對(duì)嬰兒的身體可能會(huì)出現(xiàn)不適癥狀做出預(yù)測(cè)。這樣可以幫助醫(yī)生更好的救助嬰兒。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
訓(xùn)練與驗(yàn)證損失驟升:機(jī)器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機(jī)器學(xué)習(xí)模型訓(xùn)練過(guò)程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類(lèi)核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對(duì)數(shù)據(jù)的需求已從 “存儲(chǔ)” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計(jì)基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計(jì)基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語(yǔ)言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類(lèi)型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專(zhuān)業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專(zhuān)業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷(xiāo)案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷(xiāo)成為企業(yè)突圍的核心方 ...
2025-09-11