99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁(yè)精彩閱讀數(shù)據(jù)挖掘150道試題 測(cè)測(cè)你的專業(yè)能力過(guò)關(guān)嗎_數(shù)據(jù)分析師培訓(xùn)
數(shù)據(jù)挖掘150道試題 測(cè)測(cè)你的專業(yè)能力過(guò)關(guān)嗎_數(shù)據(jù)分析師培訓(xùn)
2015-03-19
收藏

數(shù)據(jù)挖掘150道試題 測(cè)測(cè)你的專業(yè)能力過(guò)關(guān)嗎_數(shù)據(jù)分析師培訓(xùn)


單選題
1. 某超市研究銷售紀(jì)錄數(shù)據(jù)后發(fā)現(xiàn),買啤酒的人很大概率也會(huì)購(gòu)買尿布,這種屬于數(shù)據(jù)挖掘的哪類問(wèn)題?(A)
A. 關(guān)聯(lián)規(guī)則發(fā)現(xiàn)
B. 聚類
C. 分類
D. 自然語(yǔ)言處理

2. 以下兩種描述分別對(duì)應(yīng)哪兩種對(duì)分類算法的評(píng)價(jià)標(biāo)準(zhǔn)? (A)
(a)警察抓小偷,描述警察抓的人中有多少個(gè)是小偷的標(biāo)準(zhǔn)。
(b)描述有多少比例的小偷給警察抓了的標(biāo)準(zhǔn)。

A. Precision, Recall
B. Recall, Precision
C. Precision, ROC
D. Recall, ROC

3. 將原始數(shù)據(jù)進(jìn)行集成、變換、維度規(guī)約、數(shù)值規(guī)約是在以下哪個(gè)步驟的任務(wù)?(C)
A. 頻繁模式挖掘
B. 分類和預(yù)測(cè)
C. 數(shù)據(jù)預(yù)處理
D. 數(shù)據(jù)流挖掘

4. 當(dāng)不知道數(shù)據(jù)所帶標(biāo)簽時(shí),可以使用哪種技術(shù)促使帶同類標(biāo)簽的數(shù)據(jù)與帶其他標(biāo)簽的數(shù)據(jù)相分離?(B)
A. 分類
B. 聚類
C. 關(guān)聯(lián)分析
D. 隱馬爾可夫鏈

5. 什么是KDD? (A)
A. 數(shù)據(jù)挖掘與知識(shí)發(fā)現(xiàn)
B. 領(lǐng)域知識(shí)發(fā)現(xiàn)
C. 文檔知識(shí)發(fā)現(xiàn)
D. 動(dòng)態(tài)知識(shí)發(fā)現(xiàn)

6. 使用交互式的和可視化的技術(shù),對(duì)數(shù)據(jù)進(jìn)行探索屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(A)
A. 探索性數(shù)據(jù)分析
B. 建模描述
C. 預(yù)測(cè)建模
D. 尋找模式和規(guī)則

7. 為數(shù)據(jù)的總體分布建模;把多維空間劃分成組等問(wèn)題屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(B)
A. 探索性數(shù)據(jù)分析
B. 建模描述
C. 預(yù)測(cè)建模
D. 尋找模式和規(guī)則

8. 建立一個(gè)模型,通過(guò)這個(gè)模型根據(jù)已知的變量值來(lái)預(yù)測(cè)其他某個(gè)變量值屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(C)
A. 根據(jù)內(nèi)容檢索
B. 建模描述
C. 預(yù)測(cè)建模
D. 尋找模式和規(guī)則

9. 用戶有一種感興趣的模式并且希望在數(shù)據(jù)集中找到相似的模式,屬于數(shù)據(jù)挖掘哪一類任務(wù)?(A)
A. 根據(jù)內(nèi)容檢索
B. 建模描述
C. 預(yù)測(cè)建模
D. 尋找模式和規(guī)則

11.下面哪種不屬于數(shù)據(jù)預(yù)處理的方法? (D)
A變量代換
B離散化
C聚集
D估計(jì)遺漏值

12. 假設(shè)12個(gè)銷售價(jià)格記錄組已經(jīng)排序如下:5, 10, 11, 13, 15,35, 50, 55, 72, 92, 204, 215 使用如下每種方法將它們劃分成四個(gè)箱。等頻(等深)劃分時(shí),15在第幾個(gè)箱子內(nèi)? (B)
A 第一個(gè)
B 第二個(gè)
C 第三個(gè)
D 第四個(gè)

13.上題中,等寬劃分時(shí)(寬度為50),15又在哪個(gè)箱子里? (A)
A 第一個(gè)
B 第二個(gè)
C 第三個(gè)
D 第四個(gè)

14.下面哪個(gè)不屬于數(shù)據(jù)的屬性類型:(D)
A 標(biāo)稱
B 序數(shù)
C 區(qū)間
D相異

15. 在上題中,屬于定量的屬性類型是:(C)
A 標(biāo)稱
B 序數(shù)
C 區(qū)間
D 相異

16. 只有非零值才重要的二元屬性被稱作:( C )
A 計(jì)數(shù)屬性
B 離散屬性
C非對(duì)稱的二元屬性
D 對(duì)稱屬性

17. 以下哪種方法不屬于特征選擇的標(biāo)準(zhǔn)方法: (D)
A 嵌入
B 過(guò)濾
C 包裝
D 抽樣

18.下面不屬于創(chuàng)建新屬性的相關(guān)方法的是: (B)
A特征提取
B特征修改
C映射數(shù)據(jù)到新的空間
D特征構(gòu)造

19. 考慮值集{1、2、3、4、5、90},其截?cái)嗑担╬=20%)是 (C)
A 2
B 3
C 3.5
D 5

20. 下面哪個(gè)屬于映射數(shù)據(jù)到新的空間的方法? (A)
A 傅立葉變換
B 特征加權(quán)
C 漸進(jìn)抽樣
D 維歸約

21. 熵是為消除不確定性所需要獲得的信息量,投擲均勻正六面體骰子的熵是: (B)
A 1比特
B 2.6比特
C 3.2比特
D 3.8比特

22. 假設(shè)屬性income的最大最小值分別是12000元和98000元。利用最大最小規(guī)范化的方法將屬性的值映射到0至1的范圍內(nèi)。對(duì)屬性income的73600元將被轉(zhuǎn)化為:(D)
A 0.821
B 1.224
C 1.458
D 0.716

23.假定用于分析的數(shù)據(jù)包含屬性age。數(shù)據(jù)元組中age的值如下(按遞增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 問(wèn)題:使用按箱平均值平滑方法對(duì)上述數(shù)據(jù)進(jìn)行平滑,箱的深度為3。第二個(gè)箱子
值為:(A)
A 18.3
B 22.6
C 26.8
D 27.9

24. 考慮值集{12 24 33 2 4 55 68 26},其四分位數(shù)極差是:(A)
A 31
B 24
C 55
D 3

25. 一所大學(xué)內(nèi)的各年紀(jì)人數(shù)分別為:一年級(jí)200人,二年級(jí)160人,三年級(jí)130人,四年級(jí)110人。則年級(jí)屬性的眾數(shù)是: (A)
A 一年級(jí)
B二年級(jí)
C 三年級(jí)
D 四年級(jí)

26. 下列哪個(gè)不是專門用于可視化時(shí)間空間數(shù)據(jù)的技術(shù): (B)
A 等高線圖
B 餅圖
C 曲面圖
D 矢量場(chǎng)圖

27. 在抽樣方法中,當(dāng)合適的樣本容量很難確定時(shí),可以使用的抽樣方法是: (D)
A 有放回的簡(jiǎn)單隨機(jī)抽樣
B 無(wú)放回的簡(jiǎn)單隨機(jī)抽樣
C 分層抽樣
D 漸進(jìn)抽樣

28. 數(shù)據(jù)倉(cāng)庫(kù)是隨著時(shí)間變化的,下面的描述不正確的是 (C)
A. 數(shù)據(jù)倉(cāng)庫(kù)隨時(shí)間的變化不斷增加新的數(shù)據(jù)內(nèi)容;
B. 捕捉到的新數(shù)據(jù)會(huì)覆蓋原來(lái)的快照;
C. 數(shù)據(jù)倉(cāng)庫(kù)隨事件變化不斷刪去舊的數(shù)據(jù)內(nèi)容;
D. 數(shù)據(jù)倉(cāng)庫(kù)中包含大量的綜合數(shù)據(jù),這些綜合數(shù)據(jù)會(huì)隨著時(shí)間的變化不斷地進(jìn)行重新綜合.

29. 關(guān)于基本數(shù)據(jù)的元數(shù)據(jù)是指: (D)
A. 基本元數(shù)據(jù)與數(shù)據(jù)源,數(shù)據(jù)倉(cāng)庫(kù),數(shù)據(jù)集市和應(yīng)用程序等結(jié)構(gòu)相關(guān)的信息;
B. 基本元數(shù)據(jù)包括與企業(yè)相關(guān)的管理方面的數(shù)據(jù)和信息;
C. 基本元數(shù)據(jù)包括日志文件和簡(jiǎn)歷執(zhí)行處理的時(shí)序調(diào)度信息;
D. 基本元數(shù)據(jù)包括關(guān)于裝載和更新處理,分析處理以及管理方面的信息.

30. 下面關(guān)于數(shù)據(jù)粒度的描述不正確的是: (C)
A. 粒度是指數(shù)據(jù)倉(cāng)庫(kù)小數(shù)據(jù)單元的詳細(xì)程度和級(jí)別;
B. 數(shù)據(jù)越詳細(xì),粒度就越小,級(jí)別也就越高;
C. 數(shù)據(jù)綜合度越高,粒度也就越大,級(jí)別也就越高;
D. 粒度的具體劃分將直接影響數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)量以及查詢質(zhì)量.
文章來(lái)源“CDA數(shù)據(jù)分析師官網(wǎng)
31. 有關(guān)數(shù)據(jù)倉(cāng)庫(kù)的開(kāi)發(fā)特點(diǎn),不正確的描述是: (A)
A. 數(shù)據(jù)倉(cāng)庫(kù)開(kāi)發(fā)要從數(shù)據(jù)出發(fā);
B. 數(shù)據(jù)倉(cāng)庫(kù)使用的需求在開(kāi)發(fā)出去就要明確;
C. 數(shù)據(jù)倉(cāng)庫(kù)的開(kāi)發(fā)是一個(gè)不斷循環(huán)的過(guò)程,是啟發(fā)式的開(kāi)發(fā);
D. 在數(shù)據(jù)倉(cāng)庫(kù)環(huán)境中,并不存在操作型環(huán)境中所固定的和較確切的處理流,數(shù)據(jù)倉(cāng)庫(kù)中數(shù)據(jù)分析和處理更靈活,且沒(méi)有固定的模式

32. 在有關(guān)數(shù)據(jù)倉(cāng)庫(kù)測(cè)試,下列說(shuō)法不正確的是: (D)
A. 在完成數(shù)據(jù)倉(cāng)庫(kù)的實(shí)施過(guò)程中,需要對(duì)數(shù)據(jù)倉(cāng)庫(kù)進(jìn)行各種測(cè)試.測(cè)試工作中要包括單元測(cè)試和系統(tǒng)測(cè)試.
B. 當(dāng)數(shù)據(jù)倉(cāng)庫(kù)的每個(gè)單獨(dú)組件完成后,就需要對(duì)他們進(jìn)行單元測(cè)試.
C. 系統(tǒng)的集成測(cè)試需要對(duì)數(shù)據(jù)倉(cāng)庫(kù)的所有組件進(jìn)行大量的功能測(cè)試和回歸測(cè)試.
D. 在測(cè)試之前沒(méi)必要制定詳細(xì)的測(cè)試計(jì)劃.

33. OLAP技術(shù)的核心是: (D)
A. 在線性;
B. 對(duì)用戶的快速響應(yīng);
C. 互操作性.
D. 多維分析;

34. 關(guān)于OLAP的特性,下面正確的是: (D)
(1)快速性 (2)可分析性 (3)多維性 (4)信息性 (5)共享性
A. (1) (2) (3)
B. (2) (3) (4)
C. (1) (2) (3) (4)
D. (1) (2) (3) (4) (5)

35. 關(guān)于OLAP和OLTP的區(qū)別描述,不正確的是: (C)
A. OLAP主要是關(guān)于如何理解聚集的大量不同的數(shù)據(jù).它與OTAP應(yīng)用程序不同.
B. 與OLAP應(yīng)用程序不同,OLTP應(yīng)用程序包含大量相對(duì)簡(jiǎn)單的事務(wù).
C. OLAP的特點(diǎn)在于事務(wù)量大,但事務(wù)內(nèi)容比較簡(jiǎn)單且重復(fù)率高.
D. OLAP是以數(shù)據(jù)倉(cāng)庫(kù)為基礎(chǔ)的,但其最終數(shù)據(jù)來(lái)源與OLTP一樣均來(lái)自底層的數(shù)據(jù)庫(kù)系統(tǒng),兩者面對(duì)的用戶是相同的.

36. OLAM技術(shù)一般簡(jiǎn)稱為”數(shù)據(jù)聯(lián)機(jī)分析挖掘”,下面說(shuō)法正確的是: (D)
A. OLAP和OLAM都基于客戶機(jī)/服務(wù)器模式,只有后者有與用戶的交互性;
B. 由于OLAM的立方體和用于OLAP的立方體有本質(zhì)的區(qū)別.
C. 基于WEB的OLAM是WEB技術(shù)與OLAM技術(shù)的結(jié)合.
D. OLAM服務(wù)器通過(guò)用戶圖形借口接收用戶的分析指令,在元數(shù)據(jù)的知道下,對(duì)超級(jí)立方體作一定的操作.

37. 關(guān)于OLAP和OLTP的說(shuō)法,下列不正確的是: (A)
A. OLAP事務(wù)量大,但事務(wù)內(nèi)容比較簡(jiǎn)單且重復(fù)率高.
B. OLAP的最終數(shù)據(jù)來(lái)源與OLTP不一樣.
C. OLTP面對(duì)的是決策人員和高層管理人員.
D. OLTP以應(yīng)用為核心,是應(yīng)用驅(qū)動(dòng)的.

38. 設(shè)X={1,2,3}是頻繁項(xiàng)集,則可由X產(chǎn)生__(C)__個(gè)關(guān)聯(lián)規(guī)則。
A、4
B、5
C、6
D、7

40. 概念分層圖是__(B)__圖。
A、無(wú)向無(wú)環(huán)
B、有向無(wú)環(huán)
C、有向有環(huán)
D、無(wú)向有環(huán)

41. 頻繁項(xiàng)集、頻繁閉項(xiàng)集、最大頻繁項(xiàng)集之間的關(guān)系是: (C)
A、頻繁項(xiàng)集 頻繁閉項(xiàng)集 =最大頻繁項(xiàng)集
B、頻繁項(xiàng)集 = 頻繁閉項(xiàng)集 最大頻繁項(xiàng)集
C、頻繁項(xiàng)集 頻繁閉項(xiàng)集 最大頻繁項(xiàng)集
D、頻繁項(xiàng)集 = 頻繁閉項(xiàng)集 = 最大頻繁項(xiàng)集

42. 考慮下面的頻繁3-項(xiàng)集的集合:{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,3,5},{3,4,5}假定數(shù)據(jù)集中只有5個(gè)項(xiàng),采用 合并策略,由候選產(chǎn)生過(guò)程得到4-項(xiàng)集不包含(C)
A、1,2,3,4
B、1,2,3,5
C、1,2,4,5
D、1,3,4,5

43.下面選項(xiàng)中t不是s的子序列的是 ( C )
A、s=<{2,4},{3,5,6},{8}> t=<{2},{3,6},{8}>
B、s=<{2,4},{3,5,6},{8}> t=<{2},{8}>
C、s=<{1,2},{3,4}> t=<{1},{2}>
D、s=<{2,4},{2,4}> t=<{2},{4}>

44. 在圖集合中發(fā)現(xiàn)一組公共子結(jié)構(gòu),這樣的任務(wù)稱為 ( B )
A、頻繁子集挖掘
B、頻繁子圖挖掘
C、頻繁數(shù)據(jù)項(xiàng)挖掘
D、頻繁模式挖掘

45. 下列度量不具有反演性的是 (D)
A、系數(shù)
B、幾率
C、Cohen度量
D、興趣因子

46. 下列__(A)__不是將主觀信息加入到模式發(fā)現(xiàn)任務(wù)中的方法。
A、與同一時(shí)期其他數(shù)據(jù)對(duì)比
B、可視化
C、基于模板的方法
D、主觀興趣度量

47. 下面購(gòu)物籃能夠提取的3-項(xiàng)集的最大數(shù)量是多少(C)

ID 購(gòu)買項(xiàng)
1 牛奶,啤酒,尿布
2 面包,黃油,牛奶
3 牛奶,尿布,餅干
4 面包,黃油,餅干
5 啤酒,餅干,尿布
6 牛奶,尿布,面包,黃油
7 面包,黃油,尿布
8 啤酒,尿布
9 牛奶,尿布,面包,黃油
10 啤酒,餅干

A、1
B、2
C、3
D、4

48. 以下哪些算法是分類算法,(B)
A,DBSCAN
B,C4.5
C,K-Mean
D,EM

49. 以下哪些分類方法可以較好地避免樣本的不平衡問(wèn)題, (A)

A,KNN
B,SVM
C,Bayes
D,神經(jīng)網(wǎng)絡(luò)

50. 決策樹中不包含一下哪種結(jié)點(diǎn), (C)

A,根結(jié)點(diǎn)(root node)
B,內(nèi)部結(jié)點(diǎn)(internal node)
C,外部結(jié)點(diǎn)(external node)
D,葉結(jié)點(diǎn)(leaf node)

51. 不純性度量中Gini計(jì)算公式為(其中c是類的個(gè)數(shù)) (A)
A, B, C, D, (A)

53. 以下哪項(xiàng)關(guān)于決策樹的說(shuō)法是錯(cuò)誤的 (C)
A. 冗余屬性不會(huì)對(duì)決策樹的準(zhǔn)確率造成不利的影響
B. 子樹可能在決策樹中重復(fù)多次
C. 決策樹算法對(duì)于噪聲的干擾非常敏感
D. 尋找最佳決策樹是NP完全問(wèn)題

54. 在基于規(guī)則分類器的中,依據(jù)規(guī)則質(zhì)量的某種度量對(duì)規(guī)則排序,保證每一個(gè)測(cè)試記錄都是由覆蓋它的“最好的”規(guī)格來(lái)分類,這種方案稱為 (B)
A. 基于類的排序方案
B. 基于規(guī)則的排序方案
C. 基于度量的排序方案
D. 基于規(guī)格的排序方案。

55. 以下哪些算法是基于規(guī)則的分類器 (A)
A. C4.5
B. KNN
C. Na?ve Bayes
D. ANN

數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼

若不方便掃碼,搜微信號(hào):CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機(jī)數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進(jìn)行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個(gè)參數(shù)驗(yàn)證碼對(duì)象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個(gè)配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺(tái)檢測(cè)極驗(yàn)服務(wù)器是否宕機(jī) new_captcha: data.new_captcha, // 用于宕機(jī)時(shí)表示是新驗(yàn)證碼的宕機(jī) product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說(shuō)明請(qǐng)參見(jiàn):http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計(jì)時(shí)完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請(qǐng)輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請(qǐng)輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }