
想玩大數(shù)據(jù)?這些專業(yè)術(shù)語你知道嗎(2)_數(shù)據(jù)分析師
平臺即服務(wù)(PaaS: Platform-as-a-Service)——為云計算解決方案提供所有必需的基礎(chǔ)平臺的一種服務(wù)
預(yù)測分析(Predictive analysis)——大數(shù)據(jù)分析方法中最有價值的一種分析方法,這種方法有助于預(yù)測個人未來(近期)的行為,例如某人很可能會買某些商品,可能會訪問某些網(wǎng)站,做某些事情或者產(chǎn)生某種行為。通過使用各種不同的數(shù)據(jù)集,例如歷史數(shù)據(jù),事務(wù)數(shù)據(jù),社交數(shù)據(jù),或者客戶的個人信息數(shù)據(jù),來識別風(fēng)險和機(jī)遇
隱私(Privacy)——把具有可識別出個人信息的數(shù)據(jù)與其他數(shù)據(jù)分離開,以確保用戶隱私。
公共數(shù)據(jù)(Public data)——由公共基金創(chuàng)建的公共信息或公共數(shù)據(jù)集。
Q
數(shù)字化自我(Quantified Self)——使用應(yīng)用程序跟蹤用戶一天的一舉一動,從而更好地理解其相關(guān)的行為
查詢(Query)——查找某個問題答案的相關(guān)信息
R
再識別(Re-identification)——將多個數(shù)據(jù)集合并在一起,從匿名化的數(shù)據(jù)中識別出個人信息
回歸分析(Regression analysis)——確定兩個變量間的依賴關(guān)系。這種方法假設(shè)兩個變量之間存在單向的因果關(guān)系(譯者注:自變量,因變量,二者不可互換)
RFID——射頻識別; 這種識別技術(shù)使用一種無線非接觸式射頻電磁場傳感器來傳輸數(shù)據(jù)
實時數(shù)據(jù)(Real-time data)——指在幾毫秒內(nèi)被創(chuàng)建、處理、存儲、分析并顯示的數(shù)據(jù)
推薦引擎(Recommendation engine)——推薦引擎算法根據(jù)用戶之前的購買行為或其他購買行為向用戶推薦某種產(chǎn)品
路徑分析(Routing analysis)——針對某種運輸方法通過使用多種不同的變量分析從而找到一條最優(yōu)路徑,以達(dá)到降低燃料費用,提高效率的目的
S
半結(jié)構(gòu)化數(shù)據(jù)(Semi-structured data)——半結(jié)構(gòu)化數(shù)據(jù)并不具有結(jié)構(gòu)化數(shù)據(jù)嚴(yán)格的存儲結(jié)構(gòu),但它可以使用標(biāo)簽或其他形式的標(biāo)記方式以保證數(shù)據(jù)的層次結(jié)構(gòu)
情感分析(Sentiment Analysis)——通過算法分析出人們是如何看待某些話題
信號分析(Signal analysis)——指通過度量隨時間或空間變化的物理量來分析產(chǎn)品的性能。特別是使用傳感器數(shù)據(jù)。
相似性搜索(Similarity searches)——在數(shù)據(jù)庫中查詢最相似的對象,這里所說的數(shù)據(jù)對象可以是任意類型的數(shù)據(jù)
仿真分析(Simulation analysis)——仿真是指模擬真實環(huán)境中進(jìn)程或系統(tǒng)的操作。仿真分析可以在仿真時考慮多種不同的變量,確保產(chǎn)品性能達(dá)到最優(yōu)
智能網(wǎng)格(Smart grid)——是指在能源網(wǎng)中使用傳感器實時監(jiān)控其運行狀態(tài),有助于提高效率
軟件即服務(wù)(SaaS: Software-as-a-Service)——基于Web的通過瀏覽器使用的一種應(yīng)用軟件
空間分析(Spatial analysis)——空間分析法分析地理信息或拓?fù)湫畔⑦@類空間數(shù)據(jù),從中得出分布在地理空間中的數(shù)據(jù)的模式和規(guī)律SQL——在關(guān)系型數(shù)據(jù)庫中,用于檢索數(shù)據(jù)的一種編程語言
結(jié)構(gòu)化數(shù)據(jù)(Structured data) -可以組織成行列結(jié)構(gòu),可識別的數(shù)據(jù)。這類數(shù)據(jù)通常是一條記錄,或者一個文件,或者是被正確標(biāo)記過的數(shù)據(jù)中的某一個字段,并且可以被精確地定位到。
T
T字節(jié)(TB: Terabytes)——約等于1000 GB(gigabytes)。1 TB容量可以存儲約300小時的高清視頻。
時序分析(Time series analysis)——分析在重復(fù)測量時間里獲得的定義良好的數(shù)據(jù)。分析的數(shù)據(jù)必須是良好定義的,并且要取自相同時間間隔的連續(xù)時間點。
拓?fù)鋽?shù)據(jù)分析(Topological Data Analysis)——拓?fù)鋽?shù)據(jù)分析主要關(guān)注三點:復(fù)合數(shù)據(jù)模型、集群的識別、以及數(shù)據(jù)的統(tǒng)計學(xué)意義。
交易數(shù)據(jù)(Transactional data)——隨時間變化的動態(tài)數(shù)據(jù)透明性(Transparency)——消費者想要知道他們的數(shù)據(jù)有什么作用、被作何處理,而組織機(jī)構(gòu)則把這些信息都透明化了。
U
非結(jié)構(gòu)化數(shù)據(jù)(Un-structured data)——非結(jié)構(gòu)化數(shù)據(jù)一般被認(rèn)為是大量純文本數(shù)據(jù),其中還可能包含日期,數(shù)字和實例。
V
價值(Value)——(譯者注:大數(shù)據(jù)4V特點之一) 所有可用的數(shù)據(jù),能為組織機(jī)構(gòu)、社會、消費者創(chuàng)造出巨大的價值。這意味著各大企業(yè)及整個產(chǎn)業(yè)都將從大數(shù)據(jù)中獲益。
可變性(Variability)——也就是說,數(shù)據(jù)的含義總是在(快速)變化的。例如,一個詞在相同的推文中可以有完全不同的意思。
多樣(Variety)——(譯者注:大數(shù)據(jù)4V特點之一) 數(shù)據(jù)總是以各種不同的形式呈現(xiàn),如結(jié)構(gòu)化數(shù)據(jù),半結(jié)構(gòu)化數(shù)據(jù),非結(jié)構(gòu)化數(shù)據(jù),甚至還有復(fù)雜結(jié)構(gòu)化數(shù)據(jù)
高速(Velocity)——(譯者注:大數(shù)據(jù)4V特點之一) 在大數(shù)據(jù)時代,數(shù)據(jù)的創(chuàng)建、存儲、分析、虛擬化都要求被高速處理。
真實性(Veracity)——組織機(jī)構(gòu)需要確保數(shù)據(jù)的真實性,才能保證數(shù)據(jù)分析的正確性。因此,真實性(Veracity)是指數(shù)據(jù)的正確性。
可視化(Visualization)——只有正確的可視化,原始數(shù)據(jù)才可被投入使用。這里的“可視化”并非普通的圖型或餅圖,可視化指是的復(fù)雜的圖表,圖表中包含大量的數(shù)據(jù)信息,但可以被很容易地理解和閱讀。
大量(Volume)——(譯者注:大數(shù)據(jù)4V特點之一) 指數(shù)據(jù)量,范圍從Megabytes至BrontobytesW
天氣數(shù)據(jù)(Weather data)——是一種重要的開放公共數(shù)據(jù)來源,如果與其他數(shù)據(jù)來源合成在一起,可以為相關(guān)組織機(jī)構(gòu)提供深入分析的依據(jù)X
XML數(shù)據(jù)庫(XML Databases)——XML數(shù)據(jù)庫是一種以XML格式存儲數(shù)據(jù)的數(shù)據(jù)庫。XML數(shù)據(jù)庫通常與面向文檔型數(shù)據(jù)庫相關(guān)聯(lián),開發(fā)人員可以對XML數(shù)據(jù)庫的數(shù)據(jù)進(jìn)行查詢,導(dǎo)出以及按指定的格式序列化Y
Y字節(jié) (Yottabytes)——約等于1000 ZB (Zettabytes), 約等于250萬億張DVD的數(shù)據(jù)容量?,F(xiàn)今,整個數(shù)字化宇宙的數(shù)據(jù)量為1 YB, 并且將每18年翻一番。
Z
Z字節(jié) (ZB: Zettabytes)——約等于1000 EB (Exabytes), 約等于1百萬 TB。據(jù)預(yù)測,到2016年全球范圍內(nèi)每天網(wǎng)絡(luò)上通過的信息大約能達(dá)到1 ZB。
附:存儲容量單位換算表:
1 Bit(比特) = Binary Digit
8 Bits = 1 Byte(字節(jié))
1,000 Bytes = 1 Kilobyte
1,000 Kilobytes = 1 Megabyte
1,000 Megabytes = 1 Gigabyte
1,000 Gigabytes = 1 Terabyte
1,000 Terabytes = 1 Petabyte
1,000 Petabytes = 1 Exabyte
1,000 Exabytes = 1 Zettabyte
1,000 Zettabytes = 1 Yottabyte
1,000 Yottabytes = 1 Brontobyte
1,000 Brontobytes = 1 Geopbyte。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10