99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀教你如何迅速秒殺99%的海量數(shù)據(jù)處理面試題(2)
教你如何迅速秒殺99%的海量數(shù)據(jù)處理面試題(2)
2015-01-24
收藏

教你如何迅速秒殺99%的海量數(shù)據(jù)處理面試題(2)


4、有10個(gè)文件,每個(gè)文件1G,每個(gè)文件的每一行存放的都是用戶的query,每個(gè)文件的query都可能重復(fù)。要求你按照query的頻度排序。

   直接上:

  1. hash映射:順序讀取10個(gè)文件,按照hash(query)%10的結(jié)果將query寫入到另外10個(gè)文件(記為)中。這樣新生成的文件每個(gè)的大小大約也1G(假設(shè)hash函數(shù)是隨機(jī)的)。
  2. hash統(tǒng)計(jì):找一臺(tái)內(nèi)存在2G左右的機(jī)器,依次對(duì)用hash_map(query, query_count)來統(tǒng)計(jì)每個(gè)query出現(xiàn)的次數(shù)。注:hash_map(query,query_count)是用來統(tǒng)計(jì)每個(gè)query的出現(xiàn)次數(shù),不是存儲(chǔ)他們的值,出現(xiàn)一次,則count+1。
  3. 堆/快速/歸并排序:利用快速/堆/歸并排序按照出現(xiàn)次數(shù)進(jìn)行排序。將排序好的query和對(duì)應(yīng)的query_cout輸出到文件中。這樣得到了10個(gè)排好序的文件(記為)。對(duì)這10個(gè)文件進(jìn)行歸并排序(內(nèi)排序與外排序相結(jié)合)。
     除此之外,此題還有以下兩個(gè)方法:
    方案2:一般query的總量是有限的,只是重復(fù)的次數(shù)比較多而已,可能對(duì)于所有的query,一次性就可以加入到內(nèi)存了。這樣,我們就可以采用trie樹/hash_map等直接來統(tǒng)計(jì)每個(gè)query出現(xiàn)的次數(shù),然后按出現(xiàn)次數(shù)做快速/堆/歸并排序就可以了。

    方案3:與方案1類似,但在做完hash,分成多個(gè)文件后,可以交給多個(gè)文件來處理,采用分布式的架構(gòu)來處理(比如MapReduce),最后再進(jìn)行合并。

5、 給定a、b兩個(gè)文件,各存放50億個(gè)url,每個(gè)url各占64字節(jié),內(nèi)存限制是4G,讓你找出a、b文件共同的url?

    可以估計(jì)每個(gè)文件安的大小為5G×64=320G,遠(yuǎn)遠(yuǎn)大于內(nèi)存限制的4G。所以不可能將其完全加載到內(nèi)存中處理。考慮采取分而治之的方法。

  1. 分而治之/hash映射遍歷文件a,對(duì)每個(gè)url求取,然后根據(jù)所取得的值將url分別存儲(chǔ)到1000個(gè)小文件(記為)中。這樣每個(gè)小文件的大約為300M。遍歷文件b,采取和a相同的方式將url分別存儲(chǔ)到1000小文件中(記為)。這樣處理后,所有可能相同的url都在對(duì)應(yīng)的小文件()中,不對(duì)應(yīng)的小文件不可能有相同的url。然后我們只要求出1000對(duì)小文件中相同的url即可。
  2. hash統(tǒng)計(jì):求每對(duì)小文件中相同的url時(shí),可以把其中一個(gè)小文件的url存儲(chǔ)到hash_set中。然后遍歷另一個(gè)小文件的每個(gè)url,看其是否在剛才構(gòu)建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

    OK,此第一種方法:分而治之/hash映射 + hash統(tǒng)計(jì) + 堆/快速/歸并排序,再看最后三道題,如下:

6、怎么在海量數(shù)據(jù)中找出重復(fù)次數(shù)最多的一個(gè)?

    方案1:先做hash,然后求模映射為小文件,求出每個(gè)小文件中重復(fù)次數(shù)最多的一個(gè),并記錄重復(fù)次數(shù)。然后找出上一步求出的數(shù)據(jù)中重復(fù)次數(shù)最多的一個(gè)就是所求(具體參考前面的題)。

7、上千萬或上億數(shù)據(jù)(有重復(fù)),統(tǒng)計(jì)其中出現(xiàn)次數(shù)最多的錢N個(gè)數(shù)據(jù)。

    方案1:上千萬或上億的數(shù)據(jù),現(xiàn)在的機(jī)器的內(nèi)存應(yīng)該能存下。所以考慮采用hash_map/搜索二叉樹/紅黑樹等來進(jìn)行統(tǒng)計(jì)次數(shù)。然后就是取出前N個(gè)出現(xiàn)次數(shù)最多的數(shù)據(jù)了,可以用第2題提到的堆機(jī)制完成。

8、一個(gè)文本文件,大約有一萬行,每行一個(gè)詞,要求統(tǒng)計(jì)出其中最頻繁出現(xiàn)的前10個(gè)詞,請(qǐng)給出思想,給出時(shí)間復(fù)雜度分析。

     方案1:這題是考慮時(shí)間效率。用trie樹統(tǒng)計(jì)每個(gè)詞出現(xiàn)的次數(shù),時(shí)間復(fù)雜度是O(n*le)(le表示單詞的平準(zhǔn)長度)。然后是找出出現(xiàn)最頻繁的前10個(gè)詞,可以用堆來實(shí)現(xiàn),前面的題中已經(jīng)講到了,時(shí)間復(fù)雜度是O(n*lg10)。所以總的時(shí)間復(fù)雜度,是O(n*le)與O(n*lg10)中較大的哪一個(gè)。

    接下來,咱們來看第二種方法,雙層捅劃分。

密匙二、雙層桶劃分

雙層桶劃分----其實(shí)本質(zhì)上還是分而治之的思想,重在“分”的技巧上!
  適用范圍:第k大,中位數(shù),不重復(fù)或重復(fù)的數(shù)字
  基本原理及要點(diǎn):因?yàn)樵胤秶艽?,不能利用直接尋址表,所以通過多次劃分,逐步確定范圍,然后最后在一個(gè)可以接受的范圍內(nèi)進(jìn)行。可以通過多次縮小,雙層只是一個(gè)例子。
  擴(kuò)展:
  問題實(shí)例:

        1).2.5億個(gè)整數(shù)中找出不重復(fù)的整數(shù)的個(gè)數(shù),內(nèi)存空間不足以容納這2.5億個(gè)整數(shù)。
  有點(diǎn)像鴿巢原理,整數(shù)個(gè)數(shù)為2^32,也就是,我們可以將這2^32個(gè)數(shù),劃分為2^8個(gè)區(qū)域(比如用單個(gè)文件代表一個(gè)區(qū)域),然后將數(shù)據(jù)分離到不同的區(qū)域,然后不同的區(qū)域在利用bitmap就可以直接解決了。也就是說只要有足夠的磁盤空間,就可以很方便的解決。

       2).5億個(gè)int找它們的中位數(shù)。
  這個(gè)例子比上面那個(gè)更明顯。首先我們將int劃分為2^16個(gè)區(qū)域,然后讀取數(shù)據(jù)統(tǒng)計(jì)落到各個(gè)區(qū)域里的數(shù)的個(gè)數(shù),之后我們根據(jù)統(tǒng)計(jì)結(jié)果就可以判斷中位數(shù)落到那個(gè)區(qū)域,同時(shí)知道這個(gè)區(qū)域中的第幾大數(shù)剛好是中位數(shù)。然后第二次掃描我們只統(tǒng)計(jì)落在這個(gè)區(qū)域中的那些數(shù)就可以了。
  實(shí)際上,如果不是int是int64,我們可以經(jīng)過3次這樣的劃分即可降低到可以接受的程度。即可以先將int64分成2^24個(gè)區(qū)域,然后確定區(qū)域的第幾大數(shù),在將該區(qū)域分成2^20個(gè)子區(qū)域,然后確定是子區(qū)域的第幾大數(shù),然后子區(qū)域里的數(shù)的個(gè)數(shù)只有2^20,就可以直接利用direct addr table進(jìn)行統(tǒng)計(jì)了。


密匙三:Bloom filter/Bitmap

Bloom filter

關(guān)于什么是Bloom filter,請(qǐng)參看此文:海量數(shù)據(jù)處理之Bloom Filter詳解。
  適用范圍:可以用來實(shí)現(xiàn)數(shù)據(jù)字典,進(jìn)行數(shù)據(jù)的判重,或者集合求交集
  基本原理及要點(diǎn):
  對(duì)于原理來說很簡單,位數(shù)組+k個(gè)獨(dú)立hash函數(shù)。將hash函數(shù)對(duì)應(yīng)的值的位數(shù)組置1,查找時(shí)如果發(fā)現(xiàn)所有hash函數(shù)對(duì)應(yīng)位都是1說明存在,很明顯這個(gè)過程并不保證查找的結(jié)果是100%正確的。同時(shí)也不支持刪除一個(gè)已經(jīng)插入的關(guān)鍵字,因?yàn)樵撽P(guān)鍵字對(duì)應(yīng)的位會(huì)牽動(dòng)到其他的關(guān)鍵字。所以一個(gè)簡單的改進(jìn)就是 counting Bloom filter,用一個(gè)counter數(shù)組代替位數(shù)組,就可以支持刪除了。
  還有一個(gè)比較重要的問題,如何根據(jù)輸入元素個(gè)數(shù)n,確定位數(shù)組m的大小及hash函數(shù)個(gè)數(shù)。當(dāng)hash函數(shù)個(gè)數(shù)k=(ln2)*(m/n)時(shí)錯(cuò)誤率最小。在錯(cuò)誤率不大于E的情況下,m至少要等于n*lg(1/E)才能表示任意n個(gè)元素的集合。但m還應(yīng)該更大些,因?yàn)檫€要保證bit數(shù)組里至少一半為0,則m應(yīng)該>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2為底的對(duì)數(shù))。
  舉個(gè)例子我們假設(shè)錯(cuò)誤率為0.01,則此時(shí)m應(yīng)大概是n的13倍。這樣k大概是8個(gè)。
  注意這里m與n的單位不同,m是bit為單位,而n則是以元素個(gè)數(shù)為單位(準(zhǔn)確的說是不同元素的個(gè)數(shù))。通常單個(gè)元素的長度都是有很多bit的。所以使用bloom filter內(nèi)存上通常都是節(jié)省的。
  擴(kuò)展:
  Bloom filter將集合中的元素映射到位數(shù)組中,用k(k為哈希函數(shù)個(gè)數(shù))個(gè)映射位是否全1表示元素在不在這個(gè)集合中。Counting bloom filter(CBF)將位數(shù)組中的每一位擴(kuò)展為一個(gè)counter,從而支持了元素的刪除操作。Spectral Bloom Filter(SBF)將其與集合元素的出現(xiàn)次數(shù)關(guān)聯(lián)。SBF采用counter中的最小值來近似表示元素的出現(xiàn)頻率。
  問題實(shí)例:給你A,B兩個(gè)文件,各存放50億條URL,每條URL占用64字節(jié),內(nèi)存限制是4G,讓你找出A,B文件共同的URL。如果是三個(gè)乃至n個(gè)文件呢?
  根據(jù)這個(gè)問題我們來計(jì)算下內(nèi)存的占用,4G=2^32大概是40億*8大概是340億,n=50億,如果按出錯(cuò)率0.01算需要的大概是650億個(gè)bit。現(xiàn)在可用的是340億,相差并不多,這樣可能會(huì)使出錯(cuò)率上升些。另外如果這些urlip是一一對(duì)應(yīng)的,就可以轉(zhuǎn)換成ip,則大大簡單了。

    同時(shí),上文的第5題:給定a、b兩個(gè)文件,各存放50億個(gè)url,每個(gè)url各占64字節(jié),內(nèi)存限制是4G,讓你找出a、b文件共同的url?如果允許有一定的錯(cuò)誤率,可以使用Bloom filter,4G內(nèi)存大概可以表示340億bit。將其中一個(gè)文件中的url使用Bloom filter映射為這340億bit,然后挨個(gè)讀取另外一個(gè)文件的url,檢查是否與Bloom filter,如果是,那么該url應(yīng)該是共同的url(注意會(huì)有一定的錯(cuò)誤率)。

Bitmap

    至于什么是Bitmap,請(qǐng)看此文:http://blog.csdn.net/v_july_v/article/details/6685962。下面關(guān)于Bitmap的應(yīng)用,直接上題,如下第9、10道:

9、在2.5億個(gè)整數(shù)中找出不重復(fù)的整數(shù),注,內(nèi)存不足以容納這2.5億個(gè)整數(shù)。

    方案1:采用2-Bitmap(每個(gè)數(shù)分配2bit,00表示不存在,01表示出現(xiàn)一次,10表示多次,11無意義)進(jìn)行,共需內(nèi)存2^32 * 2 bit=1 GB內(nèi)存,還可以接受。然后掃描這2.5億個(gè)整數(shù),查看Bitmap中相對(duì)應(yīng)位,如果是00變01,01變10,10保持不變。所描完事后,查看bitmap,把對(duì)應(yīng)位是01的整數(shù)輸出即可。
    方案2:也可采用與第1題類似的方法,進(jìn)行劃分小文件的方法。然后在小文件中找出不重復(fù)的整數(shù),并排序。然后再進(jìn)行歸并,注意去除重復(fù)的元素。

10、騰訊面試題:給40億個(gè)不重復(fù)的unsigned int的整數(shù),沒排過序的,然后再給一個(gè)數(shù),如何快速判斷這個(gè)數(shù)是否在那40億個(gè)數(shù)當(dāng)中?
    方案1:oo,申請(qǐng)512M的內(nèi)存,一個(gè)bit位代表一個(gè)unsigned int值。讀入40億個(gè)數(shù),設(shè)置相應(yīng)的bit位,讀入要查詢的數(shù),查看相應(yīng)bit位是否為1,為1表示存在,為0表示不存在。

數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼

若不方便掃碼,搜微信號(hào):CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機(jī)數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進(jìn)行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個(gè)參數(shù)驗(yàn)證碼對(duì)象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個(gè)配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺(tái)檢測(cè)極驗(yàn)服務(wù)器是否宕機(jī) new_captcha: data.new_captcha, // 用于宕機(jī)時(shí)表示是新驗(yàn)證碼的宕機(jī) product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請(qǐng)參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計(jì)時(shí)完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請(qǐng)輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請(qǐng)輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }