
教你如何迅速秒殺99%的海量數(shù)據(jù)處理面試題(2)
直接上:
方案3:與方案1類似,但在做完hash,分成多個(gè)文件后,可以交給多個(gè)文件來處理,采用分布式的架構(gòu)來處理(比如MapReduce),最后再進(jìn)行合并。
5、 給定a、b兩個(gè)文件,各存放50億個(gè)url,每個(gè)url各占64字節(jié),內(nèi)存限制是4G,讓你找出a、b文件共同的url?
可以估計(jì)每個(gè)文件安的大小為5G×64=320G,遠(yuǎn)遠(yuǎn)大于內(nèi)存限制的4G。所以不可能將其完全加載到內(nèi)存中處理。考慮采取分而治之的方法。
OK,此第一種方法:分而治之/hash映射 + hash統(tǒng)計(jì) + 堆/快速/歸并排序,再看最后三道題,如下:
6、怎么在海量數(shù)據(jù)中找出重復(fù)次數(shù)最多的一個(gè)?
方案1:先做hash,然后求模映射為小文件,求出每個(gè)小文件中重復(fù)次數(shù)最多的一個(gè),并記錄重復(fù)次數(shù)。然后找出上一步求出的數(shù)據(jù)中重復(fù)次數(shù)最多的一個(gè)就是所求(具體參考前面的題)。
7、上千萬或上億數(shù)據(jù)(有重復(fù)),統(tǒng)計(jì)其中出現(xiàn)次數(shù)最多的錢N個(gè)數(shù)據(jù)。
方案1:上千萬或上億的數(shù)據(jù),現(xiàn)在的機(jī)器的內(nèi)存應(yīng)該能存下。所以考慮采用hash_map/搜索二叉樹/紅黑樹等來進(jìn)行統(tǒng)計(jì)次數(shù)。然后就是取出前N個(gè)出現(xiàn)次數(shù)最多的數(shù)據(jù)了,可以用第2題提到的堆機(jī)制完成。
8、一個(gè)文本文件,大約有一萬行,每行一個(gè)詞,要求統(tǒng)計(jì)出其中最頻繁出現(xiàn)的前10個(gè)詞,請(qǐng)給出思想,給出時(shí)間復(fù)雜度分析。
方案1:這題是考慮時(shí)間效率。用trie樹統(tǒng)計(jì)每個(gè)詞出現(xiàn)的次數(shù),時(shí)間復(fù)雜度是O(n*le)(le表示單詞的平準(zhǔn)長度)。然后是找出出現(xiàn)最頻繁的前10個(gè)詞,可以用堆來實(shí)現(xiàn),前面的題中已經(jīng)講到了,時(shí)間復(fù)雜度是O(n*lg10)。所以總的時(shí)間復(fù)雜度,是O(n*le)與O(n*lg10)中較大的哪一個(gè)。接下來,咱們來看第二種方法,雙層捅劃分。
雙層桶劃分----其實(shí)本質(zhì)上還是分而治之的思想,重在“分”的技巧上!
適用范圍:第k大,中位數(shù),不重復(fù)或重復(fù)的數(shù)字
基本原理及要點(diǎn):因?yàn)樵胤秶艽?,不能利用直接尋址表,所以通過多次劃分,逐步確定范圍,然后最后在一個(gè)可以接受的范圍內(nèi)進(jìn)行。可以通過多次縮小,雙層只是一個(gè)例子。
擴(kuò)展:
問題實(shí)例:
1).2.5億個(gè)整數(shù)中找出不重復(fù)的整數(shù)的個(gè)數(shù),內(nèi)存空間不足以容納這2.5億個(gè)整數(shù)。
有點(diǎn)像鴿巢原理,整數(shù)個(gè)數(shù)為2^32,也就是,我們可以將這2^32個(gè)數(shù),劃分為2^8個(gè)區(qū)域(比如用單個(gè)文件代表一個(gè)區(qū)域),然后將數(shù)據(jù)分離到不同的區(qū)域,然后不同的區(qū)域在利用bitmap就可以直接解決了。也就是說只要有足夠的磁盤空間,就可以很方便的解決。
2).5億個(gè)int找它們的中位數(shù)。
這個(gè)例子比上面那個(gè)更明顯。首先我們將int劃分為2^16個(gè)區(qū)域,然后讀取數(shù)據(jù)統(tǒng)計(jì)落到各個(gè)區(qū)域里的數(shù)的個(gè)數(shù),之后我們根據(jù)統(tǒng)計(jì)結(jié)果就可以判斷中位數(shù)落到那個(gè)區(qū)域,同時(shí)知道這個(gè)區(qū)域中的第幾大數(shù)剛好是中位數(shù)。然后第二次掃描我們只統(tǒng)計(jì)落在這個(gè)區(qū)域中的那些數(shù)就可以了。
實(shí)際上,如果不是int是int64,我們可以經(jīng)過3次這樣的劃分即可降低到可以接受的程度。即可以先將int64分成2^24個(gè)區(qū)域,然后確定區(qū)域的第幾大數(shù),在將該區(qū)域分成2^20個(gè)子區(qū)域,然后確定是子區(qū)域的第幾大數(shù),然后子區(qū)域里的數(shù)的個(gè)數(shù)只有2^20,就可以直接利用direct addr table進(jìn)行統(tǒng)計(jì)了。
關(guān)于什么是Bloom filter,請(qǐng)參看此文:海量數(shù)據(jù)處理之Bloom Filter詳解。
適用范圍:可以用來實(shí)現(xiàn)數(shù)據(jù)字典,進(jìn)行數(shù)據(jù)的判重,或者集合求交集
基本原理及要點(diǎn):
對(duì)于原理來說很簡單,位數(shù)組+k個(gè)獨(dú)立hash函數(shù)。將hash函數(shù)對(duì)應(yīng)的值的位數(shù)組置1,查找時(shí)如果發(fā)現(xiàn)所有hash函數(shù)對(duì)應(yīng)位都是1說明存在,很明顯這個(gè)過程并不保證查找的結(jié)果是100%正確的。同時(shí)也不支持刪除一個(gè)已經(jīng)插入的關(guān)鍵字,因?yàn)樵撽P(guān)鍵字對(duì)應(yīng)的位會(huì)牽動(dòng)到其他的關(guān)鍵字。所以一個(gè)簡單的改進(jìn)就是 counting Bloom filter,用一個(gè)counter數(shù)組代替位數(shù)組,就可以支持刪除了。
還有一個(gè)比較重要的問題,如何根據(jù)輸入元素個(gè)數(shù)n,確定位數(shù)組m的大小及hash函數(shù)個(gè)數(shù)。當(dāng)hash函數(shù)個(gè)數(shù)k=(ln2)*(m/n)時(shí)錯(cuò)誤率最小。在錯(cuò)誤率不大于E的情況下,m至少要等于n*lg(1/E)才能表示任意n個(gè)元素的集合。但m還應(yīng)該更大些,因?yàn)檫€要保證bit數(shù)組里至少一半為0,則m應(yīng)該>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2為底的對(duì)數(shù))。
舉個(gè)例子我們假設(shè)錯(cuò)誤率為0.01,則此時(shí)m應(yīng)大概是n的13倍。這樣k大概是8個(gè)。
注意這里m與n的單位不同,m是bit為單位,而n則是以元素個(gè)數(shù)為單位(準(zhǔn)確的說是不同元素的個(gè)數(shù))。通常單個(gè)元素的長度都是有很多bit的。所以使用bloom filter內(nèi)存上通常都是節(jié)省的。
擴(kuò)展:
Bloom filter將集合中的元素映射到位數(shù)組中,用k(k為哈希函數(shù)個(gè)數(shù))個(gè)映射位是否全1表示元素在不在這個(gè)集合中。Counting bloom filter(CBF)將位數(shù)組中的每一位擴(kuò)展為一個(gè)counter,從而支持了元素的刪除操作。Spectral Bloom Filter(SBF)將其與集合元素的出現(xiàn)次數(shù)關(guān)聯(lián)。SBF采用counter中的最小值來近似表示元素的出現(xiàn)頻率。
問題實(shí)例:給你A,B兩個(gè)文件,各存放50億條URL,每條URL占用64字節(jié),內(nèi)存限制是4G,讓你找出A,B文件共同的URL。如果是三個(gè)乃至n個(gè)文件呢?
根據(jù)這個(gè)問題我們來計(jì)算下內(nèi)存的占用,4G=2^32大概是40億*8大概是340億,n=50億,如果按出錯(cuò)率0.01算需要的大概是650億個(gè)bit。現(xiàn)在可用的是340億,相差并不多,這樣可能會(huì)使出錯(cuò)率上升些。另外如果這些urlip是一一對(duì)應(yīng)的,就可以轉(zhuǎn)換成ip,則大大簡單了。
同時(shí),上文的第5題:給定a、b兩個(gè)文件,各存放50億個(gè)url,每個(gè)url各占64字節(jié),內(nèi)存限制是4G,讓你找出a、b文件共同的url?如果允許有一定的錯(cuò)誤率,可以使用Bloom filter,4G內(nèi)存大概可以表示340億bit。將其中一個(gè)文件中的url使用Bloom filter映射為這340億bit,然后挨個(gè)讀取另外一個(gè)文件的url,檢查是否與Bloom filter,如果是,那么該url應(yīng)該是共同的url(注意會(huì)有一定的錯(cuò)誤率)。
至于什么是Bitmap,請(qǐng)看此文:http://blog.csdn.net/v_july_v/article/details/6685962。下面關(guān)于Bitmap的應(yīng)用,直接上題,如下第9、10道:
9、在2.5億個(gè)整數(shù)中找出不重復(fù)的整數(shù),注,內(nèi)存不足以容納這2.5億個(gè)整數(shù)。
方案1:采用2-Bitmap(每個(gè)數(shù)分配2bit,00表示不存在,01表示出現(xiàn)一次,10表示多次,11無意義)進(jìn)行,共需內(nèi)存2^32 * 2 bit=1 GB內(nèi)存,還可以接受。然后掃描這2.5億個(gè)整數(shù),查看Bitmap中相對(duì)應(yīng)位,如果是00變01,01變10,10保持不變。所描完事后,查看bitmap,把對(duì)應(yīng)位是01的整數(shù)輸出即可。
方案2:也可采用與第1題類似的方法,進(jìn)行劃分小文件的方法。然后在小文件中找出不重復(fù)的整數(shù),并排序。然后再進(jìn)行歸并,注意去除重復(fù)的元素。
10、騰訊面試題:給40億個(gè)不重復(fù)的unsigned int的整數(shù),沒排過序的,然后再給一個(gè)數(shù),如何快速判斷這個(gè)數(shù)是否在那40億個(gè)數(shù)當(dāng)中?
方案1:oo,申請(qǐng)512M的內(nèi)存,一個(gè)bit位代表一個(gè)unsigned int值。讀入40億個(gè)數(shù),設(shè)置相應(yīng)的bit位,讀入要查詢的數(shù),查看相應(yīng)bit位是否為1,為1表示存在,為0表示不存在。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
2025被稱為“AI元年”,而AI,與數(shù)據(jù)密不可分。網(wǎng)易公司創(chuàng)始人丁磊在《AI思維:從數(shù)據(jù)中創(chuàng)造價(jià)值的煉金術(shù)》一書中指出:AI思維, ...
2025-07-17數(shù)據(jù)分析師的技能圖譜:從數(shù)據(jù)到價(jià)值的橋梁? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,數(shù)據(jù)分析師如同 “數(shù)據(jù)翻譯官”,將冰冷的數(shù)字轉(zhuǎn)化為清晰的 ...
2025-07-17Pandas 寫入指定行數(shù)據(jù):數(shù)據(jù)精細(xì)化管理的核心技能? 在數(shù)據(jù)處理的日常工作中,我們常常需要面對(duì)這樣的場(chǎng)景:在龐大的數(shù)據(jù)集里精 ...
2025-07-17解碼 CDA:數(shù)據(jù)時(shí)代的通行證? 在數(shù)字化浪潮席卷全球的今天,當(dāng)企業(yè)決策者盯著屏幕上跳動(dòng)的數(shù)據(jù)曲線尋找增長密碼,當(dāng)科研人員在 ...
2025-07-17CDA 精益業(yè)務(wù)數(shù)據(jù)分析:數(shù)據(jù)驅(qū)動(dòng)業(yè)務(wù)增長的實(shí)戰(zhàn)方法論 在企業(yè)數(shù)字化轉(zhuǎn)型的浪潮中,“數(shù)據(jù)分析” 已從 “加分項(xiàng)” 成為 “必修課 ...
2025-07-16MySQL 中 ADD KEY 與 ADD INDEX 詳解:用法、差異與優(yōu)化實(shí)踐 在 MySQL 數(shù)據(jù)庫表結(jié)構(gòu)設(shè)計(jì)中,索引是提升查詢性能的核心手段。無論 ...
2025-07-16解析 MySQL Update 語句中 “query end” 狀態(tài):含義、成因與優(yōu)化指南? 在 MySQL 數(shù)據(jù)庫的日常運(yùn)維與開發(fā)中,開發(fā)者和 DBA 常會(huì) ...
2025-07-16如何考取數(shù)據(jù)分析師證書:以 CDA 為例? ? 在數(shù)字化浪潮席卷各行各業(yè)的當(dāng)下,數(shù)據(jù)分析師已然成為企業(yè)挖掘數(shù)據(jù)價(jià)值、驅(qū)動(dòng)決策的 ...
2025-07-15CDA 精益業(yè)務(wù)數(shù)據(jù)分析:驅(qū)動(dòng)企業(yè)高效決策的核心引擎? 在數(shù)字經(jīng)濟(jì)時(shí)代,企業(yè)面臨著前所未有的數(shù)據(jù)洪流,如何從海量數(shù)據(jù)中提取有 ...
2025-07-15MySQL 無外鍵關(guān)聯(lián)表的 JOIN 實(shí)戰(zhàn):數(shù)據(jù)整合的靈活之道? 在 MySQL 數(shù)據(jù)庫的日常操作中,我們經(jīng)常會(huì)遇到需要整合多張表數(shù)據(jù)的場(chǎng)景 ...
2025-07-15Python Pandas:數(shù)據(jù)科學(xué)的瑞士軍刀? ? 在數(shù)據(jù)驅(qū)動(dòng)的時(shí)代,面對(duì)海量、復(fù)雜的數(shù)據(jù),如何高效地進(jìn)行處理、分析和挖掘成為關(guān)鍵。 ...
2025-07-15用 SQL 生成逆向回滾 SQL:數(shù)據(jù)操作的 “后悔藥” 指南? 在數(shù)據(jù)庫操作中,誤刪數(shù)據(jù)、錯(cuò)改字段或誤執(zhí)行批量更新等問題時(shí)有發(fā)生。 ...
2025-07-14t檢驗(yàn)與Wilcoxon檢驗(yàn)的選擇:何時(shí)用t.test,何時(shí)用wilcox.test? t 檢驗(yàn)與 Wilcoxon 檢驗(yàn)的選擇:何時(shí)用 t.test,何時(shí)用 wilcox. ...
2025-07-14AI 浪潮下的生存與進(jìn)階: CDA數(shù)據(jù)分析師—開啟新時(shí)代職業(yè)生涯的鑰匙(深度研究報(bào)告、發(fā)展指導(dǎo)白皮書) 發(fā)布機(jī)構(gòu):CDA數(shù)據(jù)科 ...
2025-07-13LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10