
以下是我在近三年做各類計(jì)量和統(tǒng)計(jì)分析過(guò)程中感受最深的東西,或能對(duì)大家有所幫助。當(dāng)然,它不是ABC的教程,也不是細(xì)致的數(shù)據(jù)分析方法介紹,它只 是總結(jié)和體會(huì)。由于我所學(xué)所做均甚雜,我也不是學(xué)統(tǒng)計(jì)、數(shù)學(xué)出身的,故本文沒(méi)有主線,只有碎片,且文中內(nèi)容僅為個(gè)人觀點(diǎn),許多論斷沒(méi)有數(shù)學(xué)證明,望統(tǒng)計(jì)、計(jì)量大牛輕拍。
關(guān)于軟件
對(duì)于我個(gè)人而言,所用的數(shù)據(jù)分析軟件包括EXCEL、SPSS、STATA、EVIEWS。在分析前期可以使用EXCEL進(jìn)行數(shù)據(jù)清洗、數(shù)據(jù)結(jié)構(gòu)調(diào) 整、復(fù)雜的新變量計(jì)算(包括邏輯計(jì)算);在后期呈現(xiàn)美觀的圖表時(shí),它的制圖制表功能更是無(wú)可取代的利器;但需要說(shuō)明的是,EXCEL畢竟只是辦公軟件,它 的作用大多局限在對(duì)數(shù)據(jù)本身進(jìn)行的操作,而非復(fù)雜的統(tǒng)計(jì)和計(jì)量分析,而且,當(dāng)樣本量達(dá)到萬(wàn)以上級(jí)別時(shí),EXCEL的運(yùn)行速度有時(shí)會(huì)讓人抓狂。
SPSS是擅長(zhǎng)于處理截面數(shù)據(jù)的傻瓜統(tǒng)計(jì)軟件。
首先,它是專業(yè)的統(tǒng)計(jì)軟件,對(duì)萬(wàn)甚至十萬(wàn)樣本量級(jí)別的數(shù)據(jù)集都能應(yīng)付自如;
其次,它是統(tǒng)計(jì)軟件而非專業(yè)的計(jì)量軟件,因此它的強(qiáng)項(xiàng)在于數(shù)據(jù)清洗、描述統(tǒng)計(jì)、假設(shè)檢驗(yàn)(T、F、卡方、方差齊性、正態(tài)性、信效度等檢驗(yàn))、多元統(tǒng)計(jì)分析(因子、聚類、判別、偏相關(guān)等)和一些常用的計(jì)量分析(初、中級(jí)計(jì)量教科書(shū)里提到的計(jì)量分析基本都能實(shí)現(xiàn)),對(duì)于復(fù)雜的、前沿的計(jì)量分析無(wú)能為力;
第三,SPSS主要用于 分析截面數(shù)據(jù),在時(shí)序和面板數(shù)據(jù)處理方面功能了了;
最后,SPSS兼容菜單化和編程化操作,是名副其實(shí)的傻瓜軟件。
STATA 與EVIEWS都是我偏好的計(jì)量軟件。前者完全編程化操作,后者兼容菜單化和編程化操作;雖然兩款軟件都能做簡(jiǎn)單的描述統(tǒng)計(jì),但是較之 SPSS差了許多;STATA與EVIEWS都是計(jì)量軟件,高級(jí)的計(jì)量分析能夠在這兩個(gè)軟件里得到實(shí)現(xiàn);STATA的擴(kuò)展性較好,我們可以上網(wǎng)找自己需要 的命令文件(.ado文件),不斷擴(kuò)展其應(yīng)用,但EVIEWS就只能等著軟件升級(jí)了;另外,對(duì)于時(shí)序數(shù)據(jù)的處理,EVIEWS較強(qiáng)。
綜上,各款軟件有自己的強(qiáng)項(xiàng)和弱項(xiàng),用什么軟件取決于數(shù)據(jù)本身的屬性及分析方法。EXCEL適用于處理小樣本數(shù)據(jù),SPSS、 STATA、EVIEWS可以處理較大的樣本;EXCEL、SPSS適合做數(shù)據(jù)清洗、新變量計(jì)算等分析前準(zhǔn)備性工作,而STATA、EVIEWS在這方面 較差;制圖制表用EXCEL;對(duì)截面數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析用SPSS,簡(jiǎn)單的計(jì)量分析SPSS、STATA、EVIEWS可以實(shí)現(xiàn),高級(jí)的計(jì)量分析用 STATA、EVIEWS,時(shí)序分析用EVIEWS。
關(guān)于因果性
做統(tǒng)計(jì)或計(jì)量,我認(rèn)為最難也最頭疼的就是進(jìn)行因果性判斷。假如你有A、B兩個(gè)變量的數(shù)據(jù),你怎么知道哪個(gè)變量是因(自變量),哪個(gè)變量是果(因變量)?
早期,人們通過(guò)觀察原因和結(jié)果之間的表面聯(lián)系進(jìn)行因果推論,比如恒常會(huì)合、時(shí)間順序。但是,人們漸漸認(rèn)識(shí)到多次的共同出現(xiàn)和共同缺失可能是因果關(guān)系,也可能是由共同的原因或其他因素造成的。從歸納法的角度來(lái)說(shuō),如果在有A的情形下出現(xiàn)B,沒(méi)有A的情形下就沒(méi)有B,那么A很可能是B的原因,但也可能 是其他未能預(yù)料到的因素在起作用,所以,在進(jìn)行因果判斷時(shí)應(yīng)對(duì)大量的事例進(jìn)行比較,以便提高判斷的可靠性。
有兩種解決因果問(wèn)題的方案:統(tǒng)計(jì)的解決方案和科學(xué)的解決方案。統(tǒng)計(jì)的解決方案主要指運(yùn)用統(tǒng)計(jì)和計(jì)量回歸的方法對(duì)微觀數(shù)據(jù)進(jìn)行分析,比較受干預(yù)樣本與未接受干預(yù)樣本在效果指標(biāo)(因變量)上的差異。需要強(qiáng)調(diào)的是,利用截面數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,不論是進(jìn)行均值比較、頻數(shù)分析,還是方差分析、相關(guān)分析,其結(jié)果 只是干預(yù)與影響效果之間因果關(guān)系成立的必要條件而非充分條件。類似的,利用截面數(shù)據(jù)進(jìn)行計(jì)量回歸,所能得到的最多也只是變量間的數(shù)量關(guān)系;計(jì)量模型中哪個(gè)變量為因變量哪個(gè)變量為自變量,完全出于分析者根據(jù)其他考慮進(jìn)行的預(yù)設(shè),與計(jì)量分析結(jié)果沒(méi)有關(guān)系??傊貧w并不意味著因果關(guān)系的成立,因果關(guān)系的判定或 推斷必須依據(jù)經(jīng)過(guò)實(shí)踐檢驗(yàn)的相關(guān)理論。雖然利用截面數(shù)據(jù)進(jìn)行因果判斷顯得勉強(qiáng),但如果研究者掌握了時(shí)間序列數(shù)據(jù),因果判斷仍有可為,其中最經(jīng)典的方法就是進(jìn)行格蘭杰因果關(guān)系檢驗(yàn)。但格蘭杰因果關(guān)系檢驗(yàn)的結(jié)論也只是統(tǒng)計(jì)意義上的因果性,而不一定是真正的因果關(guān)系,況且格蘭杰因果關(guān)系檢驗(yàn)對(duì)數(shù)據(jù)的要求較高 (多期時(shí)序數(shù)據(jù)),因此該方法對(duì)截面數(shù)據(jù)無(wú)能為力。綜上所述,統(tǒng)計(jì)、計(jì)量分析的結(jié)果可以作為真正的因果關(guān)系的一種支持,但不能作為肯定或否定因果關(guān)系的最終根據(jù)。
科學(xué)的解決方案主要指實(shí)驗(yàn)法,包括隨機(jī)分組實(shí)驗(yàn)和準(zhǔn)實(shí)驗(yàn)。以實(shí)驗(yàn)的方法對(duì)干預(yù)的效果進(jìn)行評(píng)估,可以對(duì)除干預(yù)外的其他影響因素加以控制,從而將干預(yù)實(shí)施后的效果歸因?yàn)楦深A(yù)本身,這就解決了因果性的確認(rèn)問(wèn)題。
關(guān)于實(shí)驗(yàn)
在隨機(jī)實(shí)驗(yàn)中,樣本被隨機(jī)分成兩組,一組經(jīng)歷處理?xiàng)l件(進(jìn)入干預(yù)組),另一組接受控制條件(進(jìn)入對(duì)照組),然后比較兩組樣本的效果指標(biāo)均值是否有差異。隨機(jī)分組使得兩組樣本同質(zhì),即分組、干預(yù)與樣本的所有自身屬性相互獨(dú)立,從而可以通過(guò)干預(yù)結(jié)束時(shí)兩個(gè)群體在效果指標(biāo)上的差異來(lái)考察實(shí)驗(yàn)處 理的凈效應(yīng)。隨機(jī)實(shí)驗(yàn)設(shè)計(jì)方法能夠在最大程度上保證干預(yù)組與對(duì)照組的相似性,得出的研究結(jié)論更具可靠性,更具說(shuō)服力。但是這種方法也是備受爭(zhēng)議的
一是因?yàn)樗鼘?shí)施難度較大、成本較高;
二是因?yàn)樵诟深A(yù)的影響評(píng)估中,接受干預(yù)與否通常并不是隨機(jī)發(fā)生的;
第三,在社會(huì)科學(xué)研究領(lǐng)域,完全隨機(jī)分配實(shí)驗(yàn)對(duì)象的做法會(huì) 涉及到研究倫理和道德問(wèn)題。
鑒于上述原因,利用非隨機(jī)數(shù)據(jù)進(jìn)行的準(zhǔn)實(shí)驗(yàn)設(shè)計(jì)是一個(gè)可供選擇的替代方法。準(zhǔn)實(shí)驗(yàn)與隨機(jī)實(shí)驗(yàn)區(qū)分的標(biāo)準(zhǔn)是前者沒(méi)有隨機(jī)分配樣本。
通過(guò)準(zhǔn)實(shí)驗(yàn)對(duì)干預(yù)的影響效果進(jìn)行評(píng)估,由于樣本接受干預(yù)與否并不是隨機(jī)發(fā)生的,而是人為選擇的,因此對(duì)于非隨機(jī)數(shù)據(jù),不能簡(jiǎn)單的認(rèn)為效果指標(biāo)的差異來(lái)源于干預(yù)。在剔除干預(yù)因素后,干預(yù)組和對(duì)照組的本身還可能存在著一些影響效果指標(biāo)的因素,這些因素對(duì)效果指標(biāo)的作用有可能同干預(yù)對(duì)效果指標(biāo)的作用相混 淆。為了解決這個(gè)問(wèn)題,可以運(yùn)用統(tǒng)計(jì)或計(jì)量的方法對(duì)除干預(yù)因素外的其他可能的影響因素進(jìn)行控制,或運(yùn)用匹配的方法調(diào)整樣本屬性的不平衡性在對(duì)照組中尋找一個(gè)除了干預(yù)因素不同之外,其他因素與干預(yù)組樣本相同的對(duì)照樣本與之配對(duì)這可以保證這些影響因素和分組安排獨(dú)立。
隨機(jī)實(shí)驗(yàn)需要至少兩期的面板數(shù)據(jù),并且要求樣本在干預(yù)組和對(duì)照組隨機(jī)分布,分析方法就是DID(倍差法,或曰雙重差分法);準(zhǔn)實(shí)驗(yàn)分析用截面數(shù)據(jù)就 能做,不要求樣本在干預(yù)組和對(duì)照組隨機(jī)分布,分析方法包括DID(需兩期的面板數(shù)據(jù))、PSM(傾向性得分匹配法,需一期的截面數(shù)據(jù))和PSM- DID(需兩期的面板數(shù)據(jù))。從準(zhǔn)確度角度來(lái)說(shuō),隨機(jī)實(shí)驗(yàn)的準(zhǔn)確度高于準(zhǔn)實(shí)驗(yàn)和非實(shí)驗(yàn)分析。
關(guān)于分析工具的選擇
如果根據(jù)理論或邏輯已經(jīng)預(yù)設(shè)了變量間的因果關(guān)系,那么就無(wú)需使用實(shí)驗(yàn)方法。我對(duì)非實(shí)驗(yàn)數(shù)據(jù)分析工具的選擇原則如下。
① 因變量為連續(xù)變量,自變量至少有一個(gè)連續(xù)變量,進(jìn)行多元線性回歸;
② 因變量為連續(xù)變量,自變量全部為分類變量,進(jìn)行方差分析;
③ 因變量為分類變量,自變量至少有一個(gè)連續(xù)變量,使用Logit模型或Probit模型;
④ 因變量為分類變量,自變量全部為分類變量,進(jìn)行交叉表分析和卡方檢驗(yàn);
⑤ 因變量在某個(gè)閉區(qū)間內(nèi)分布,并且有較多樣本落在閉區(qū)間的邊界上,使用Tobit模型
⑥ 因變量不唯一,如多產(chǎn)出問(wèn)題,進(jìn)行數(shù)據(jù)包絡(luò)分析(DEA);
⑦ 因變量為整數(shù)、數(shù)值小、取零個(gè)數(shù)較多,使用計(jì)數(shù)(Count)模型;
⑧ 數(shù)據(jù)具有層次結(jié)構(gòu)(嵌套結(jié)構(gòu)),使用多層線性模型(HLM)。
隨著統(tǒng)計(jì)和計(jì)量經(jīng)濟(jì)學(xué)的發(fā)展,各種前沿分析工具層出不窮,但我認(rèn)為最靠譜的分析工具不外乎以下四種:DID(針對(duì)隨機(jī)實(shí)驗(yàn)),多元線性回歸,固定效 應(yīng)變截距模型(FE,針對(duì)面板數(shù)據(jù)),Logit模型或Probit模型(針對(duì)分類因變量數(shù)據(jù))。
其他方法或適用條件苛刻,或分析過(guò)程折騰,或方法本身不可靠(尤其是聚類分析、判別分析,超級(jí)不靠譜),因此能用以上四種方法分析問(wèn)題時(shí),不必為炫方法而瞎折騰。
關(guān)于擬合優(yōu)度、變量選擇原則及估計(jì)值絕對(duì)大小的意義
在人人的數(shù)據(jù)分析小站中,某同學(xué)提出這樣一個(gè)問(wèn)題:多元回歸分析中,怎么選擇自變量和因變量,可以使R方達(dá)到80%以上?
很顯然,問(wèn)這個(gè)問(wèn)題的同學(xué)要么沒(méi)學(xué)好計(jì)量,要么就是犯了功利主義的錯(cuò)誤,或者二者皆有。擬合優(yōu)度的大小很大程度上取決于數(shù)據(jù)本身的性質(zhì)。如果數(shù)據(jù)是時(shí)序數(shù)據(jù),只要拿有點(diǎn)相關(guān)關(guān)系的變量進(jìn)行回歸就能使擬合優(yōu)度達(dá)到80%以上,但這樣的高R方根本說(shuō)明不了什么,很可能使分析者陷入偽回歸的陷阱,嚴(yán)謹(jǐn)?shù)淖?法當(dāng)然是做平穩(wěn)性檢驗(yàn)和協(xié)整檢驗(yàn);如果是截面數(shù)據(jù),根本沒(méi)必要追求R方到80%的程度,一般來(lái)說(shuō),有個(gè)20%、30%就非常大了。
如果一定要增大R方,那么最應(yīng)該做的的確是對(duì)納入模型的變量進(jìn)行選擇。選擇納入模型的原則我認(rèn)為有三條。
第一,從理論和邏輯出發(fā),將可能影響因變量的變量作為自變量納入模型,即理論上或邏輯上能影響因變量的自變量必須納入模型,即使該自變量的回歸系數(shù)不顯著。
第二,奧姆剃刀原則如無(wú)必要,勿增實(shí)體,即理論上或邏輯上不能影響因變量的自變量不能納入模型,即使該自變量的回歸系數(shù)顯著。
第三,防止納入具有多重共線性的自變量。
前面說(shuō)了,對(duì)截面數(shù)據(jù)進(jìn)行計(jì)量分析,R方能達(dá)到20%、30%是非常了不起的事情。但是,如果擬合優(yōu)度(或類似擬合優(yōu)度的指標(biāo))在20%、30%或 更低時(shí),回歸系數(shù)只具有定性或定序上的意義,強(qiáng)調(diào)其絕對(duì)數(shù)值的大小沒(méi)什么意義。譬如lnY=alnA+blnB++zlnZ+c回歸的R方為20%,a 為0.375,b為0.224,且二者的T檢驗(yàn)顯著,那么我們可以說(shuō),A、B對(duì)Y有影響,也可以說(shuō)一百分點(diǎn)的A變化對(duì)Y的影響大于一百分點(diǎn)的B變化對(duì)Y的 影響(控制其他因素的情況下),但說(shuō)一百分點(diǎn)的A變化對(duì)Y的影響較一百分點(diǎn)的B變化對(duì)Y的影響大0.151%,就沒(méi)什么意義了。
其他一些建議或忠告
用心思考變量間的因果關(guān)系:是A影響了B還是B影響了A?A、B之間是否真的有因果關(guān)系?是否存在C,使C既影響A又影響B(tài),而A、B本身無(wú)直接關(guān)系?
仔細(xì)選擇自變量,不要遺漏重要變量,否則會(huì)造成內(nèi)生性問(wèn)題。如果遇上了內(nèi)生性問(wèn)題,先不要忙著尋找工具變量或使用2SLS,尋找被遺漏的變量才是最 重要的事情。如果被遺漏的變量即使找到卻囿于各種困難無(wú)法納入分析,而你又忽然想到了一個(gè)絕佳的工具變量,那么恭喜你,你可以在核心期刊發(fā)文章了!
一定要控制其他可能對(duì)因變量產(chǎn)生影響的因素,并認(rèn)識(shí)到對(duì)回歸系數(shù)和偏相關(guān)分析結(jié)果的解釋都是建立在其他條件不變的情況之下。
看到R方很大時(shí)不要忙著高興,如果F檢驗(yàn)顯著而T檢驗(yàn)不顯著,很可能存在多重共線性。看到t值很大時(shí),也不要忙著高興,因?yàn)檫@很可能是偽回歸的產(chǎn)物;如果此時(shí)DW值很?。ㄐ∮?.5),那么偽回歸的可能性進(jìn)一步變大。
均值比較雖然簡(jiǎn)單卻考驗(yàn)分析者的嚴(yán)謹(jǐn)性。兩個(gè)看似不同的平均數(shù)、中位數(shù)或比率是否意味著高下有別?樣本取自獨(dú)立總體還是相關(guān)總體?方差齊或不齊?比較的是平均數(shù)、中位數(shù)還是比率差異?
樣本量限制了所能做的分析,小樣本時(shí)請(qǐng)珍惜自由度;不要用小于30個(gè)樣本的數(shù)據(jù)進(jìn)行計(jì)量分析(尤其是時(shí)序分析)和復(fù)雜的統(tǒng)計(jì)分析;不要以為能從小于或等于5期的數(shù)據(jù)中看出什么發(fā)展趨勢(shì);不要沒(méi)有依據(jù)的使用復(fù)雜的模型和分析方法;不要將一目了然的簡(jiǎn)單問(wèn)題故意復(fù)雜化。
最重要的,不要造假!不對(duì)數(shù)據(jù)本身造假,也不對(duì)分析結(jié)果造假!數(shù)據(jù)分析前可以進(jìn)行一定的清洗,將奇異值去掉,也可以嘗試對(duì)未預(yù)料到的分析結(jié)果進(jìn)行探討和解釋,但如果去改數(shù)據(jù)改分析結(jié)果,那還有什么必要進(jìn)行數(shù)據(jù)分析呢?直接編文章編報(bào)告不就得了?某些詭異的、不合常理的數(shù)據(jù)分析結(jié)果,很可能就是研究最重要的所得。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10