
常見算法分類_數(shù)據(jù)分析師
機(jī)器學(xué)習(xí)(Machine Learning, ML)是一門多領(lǐng)域交叉學(xué)科,涉及概率論、統(tǒng)計(jì)學(xué)、逼近論、凸分析、算法復(fù)雜度理論等多門學(xué)科。專門研究計(jì)算機(jī)怎樣模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)行為,以獲取新的知識(shí)或技能,重新組織已有的知識(shí)結(jié)構(gòu)使之不斷改善自身的性能。
它是人工智能的核心,是使計(jì)算機(jī)具有智能的根本途徑,其應(yīng)用遍及人工智能的各個(gè)領(lǐng)域,它主要使用歸納、綜合而不是演繹。
綜合分類
綜合考慮各種學(xué)習(xí)方法出現(xiàn)的歷史淵源、知識(shí)表示、推理策略、結(jié)果評(píng)估的相似性、研究人員交流的相對(duì)集中性以及應(yīng)用領(lǐng)域等諸因素。將機(jī)器學(xué)習(xí)方法[1]區(qū)分為以下六類:
1)經(jīng)驗(yàn)性歸納學(xué)習(xí) (empirical inductive learning)
經(jīng)驗(yàn)性歸納學(xué)習(xí)采用一些數(shù)據(jù)密集的經(jīng)驗(yàn)方法(如版本空間法、ID3法,定律發(fā)現(xiàn)方法)對(duì)例子進(jìn)行歸納學(xué)習(xí)。其例子和學(xué)習(xí)結(jié)果一般都采用屬性、謂詞、關(guān)系等符號(hào)表示。它相當(dāng)于基于學(xué)習(xí)策略分類中的歸納學(xué)習(xí),但扣除聯(lián)接學(xué)習(xí)、遺傳算法、加強(qiáng)學(xué)習(xí)的部分。
2)分析學(xué)習(xí)(analytic learning)
分析學(xué)習(xí)方法是從一個(gè)或少數(shù)幾個(gè)實(shí)例出發(fā),運(yùn)用領(lǐng)域知識(shí)進(jìn)行分析。其主要特征為:
分析學(xué)習(xí)的目標(biāo)是改善系統(tǒng)的性能,而不是新的概念描述。分析學(xué)習(xí)包括應(yīng)用解釋學(xué)習(xí)、演繹學(xué)習(xí)、多級(jí)結(jié)構(gòu)組塊以及宏操作學(xué)習(xí)等技術(shù)。
3)類比學(xué)習(xí)
它相當(dāng)于基于學(xué)習(xí)策略分類中的類比學(xué)習(xí)。在這一類型的學(xué)習(xí)中比較引人注目的研究是通過(guò)與過(guò)去經(jīng)歷的具體事例作類比來(lái)學(xué)習(xí),稱為基于范例的學(xué)習(xí)(case_based learning),或簡(jiǎn)稱范例學(xué)習(xí)。
4)遺傳算法(genetic algorithm)
遺傳算法模擬生物繁殖的突變、交換和達(dá)爾文的自然選擇(在每一生態(tài)環(huán)境中適者生存)。它把問(wèn)題可能的解編碼為一個(gè)向量,稱為個(gè)體,向量的每一個(gè)元素稱為基因,并利用目標(biāo)函數(shù)(相應(yīng)于自然選擇標(biāo)準(zhǔn))對(duì)群體(個(gè)體的集合)中的每一個(gè)個(gè)體進(jìn)行評(píng)價(jià),根據(jù)評(píng)價(jià)值(適應(yīng)度)對(duì)個(gè)體進(jìn)行選擇、交換、變異等遺傳操作,從而得到新的群體。遺傳算法適用于非常復(fù)雜和困難的環(huán)境,比如,帶有大量噪聲和無(wú)關(guān)數(shù)據(jù)、事物不斷更新、問(wèn)題目標(biāo)不能明顯和精確地定義,以及通過(guò)很長(zhǎng)的執(zhí)行過(guò)程才能確定當(dāng)前行為的價(jià)值等。同神經(jīng)網(wǎng)絡(luò)一樣,遺傳算法的研究已經(jīng)發(fā)展為人工智能的一個(gè)獨(dú)立分支,其代表人物為霍勒德(J.H.Holland)。
5)聯(lián)接學(xué)習(xí)
典型的聯(lián)接模型實(shí)現(xiàn)為人工神經(jīng)網(wǎng)絡(luò),其由稱為神經(jīng)元的一些簡(jiǎn)單計(jì)算單元以及單元間的加權(quán)聯(lián)接組成。
6)增強(qiáng)學(xué)習(xí)(reinforcement learning)
增強(qiáng)學(xué)習(xí)的特點(diǎn)是通過(guò)與環(huán)境的試探性(trial and error)交互來(lái)確定和優(yōu)化動(dòng)作的選擇,以實(shí)現(xiàn)所謂的序列決策任務(wù)。在這種任務(wù)中,學(xué)習(xí)機(jī)制通過(guò)選擇并執(zhí)行動(dòng)作,導(dǎo)致系統(tǒng)狀態(tài)的變化,并有可能得到某種強(qiáng)化信號(hào)(立即回報(bào)),從而實(shí)現(xiàn)與環(huán)境的交互。強(qiáng)化信號(hào)就是對(duì)系統(tǒng)行為的一種標(biāo)量化的獎(jiǎng)懲。系統(tǒng)學(xué)習(xí)的目標(biāo)是尋找一個(gè)合適的動(dòng)作選擇策略,即在任一給定的狀態(tài)下選擇哪種動(dòng)作的方法,使產(chǎn)生的動(dòng)作序列可獲得某種最優(yōu)的結(jié)果(如累計(jì)立即回報(bào)最大)。
在綜合分類中,經(jīng)驗(yàn)歸納學(xué)習(xí)、遺傳算法、聯(lián)接學(xué)習(xí)和增強(qiáng)學(xué)習(xí)均屬于歸納學(xué)習(xí),其中經(jīng)驗(yàn)歸納學(xué)習(xí)采用符號(hào)表示方式,而遺傳算法、聯(lián)接學(xué)習(xí)和加強(qiáng)學(xué)習(xí)則采用亞符號(hào)表示方式;分析學(xué)習(xí)屬于演繹學(xué)習(xí)。
實(shí)際上,類比策略可看成是歸納和演繹策略的綜合。因而最基本的學(xué)習(xí)策略只有歸納和演繹。
從學(xué)習(xí)內(nèi)容的角度看,采用歸納策略的學(xué)習(xí)由于是對(duì)輸入進(jìn)行歸納,所學(xué)習(xí)的知識(shí)顯然超過(guò)原有系統(tǒng)知識(shí)庫(kù)所能蘊(yùn)涵的范圍,所學(xué)結(jié)果改變了系統(tǒng)的知識(shí)演繹閉包, 因而這種類型的學(xué)習(xí)又可稱為知識(shí)級(jí)學(xué)習(xí);而采用演繹策略的學(xué)習(xí)盡管所學(xué)的知識(shí)能提高系統(tǒng)的效率,但仍能被原有系統(tǒng)的知識(shí)庫(kù)所蘊(yùn)涵,即所學(xué)的知識(shí)未能改變系統(tǒng)的演繹閉包,因而這種類型的學(xué)習(xí)又被稱為符號(hào)級(jí)學(xué)習(xí)。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
訓(xùn)練與驗(yàn)證損失驟升:機(jī)器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機(jī)器學(xué)習(xí)模型訓(xùn)練過(guò)程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對(duì)數(shù)據(jù)的需求已從 “存儲(chǔ)” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計(jì)基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計(jì)基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語(yǔ)言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11