
隨著大數據的熱潮不斷升溫,幾乎各個領域都有洪水傾瀉般的信息涌來,面對用戶成千上萬的瀏覽記錄、記錄行為數據,如果就單純的Excel來進行數據處理是遠遠不能滿足的。但如果只用一些操作軟件來分析,而不怎么如何用邏輯數據來分析的話,那也只是簡單的數據處理。
若要列出所有程序語言,你能忘記其他的沒關系,但最不能忘的就是R。從1997年悄悄地出現,最大的優(yōu)勢就是它免費,為昂貴的統(tǒng)計軟件像是Matlab或SAS的另一種選擇。
但是在過去幾年來,它的身價大翻轉,變成了資料科學界眼中的寶。不只是木訥的統(tǒng)計學家熟知它,包括WallStreet交易員、生物學家,以及硅谷開發(fā)者,他們都相當熟悉R。多元化的公司像是Google、Facebook、美國銀行以及NewYorkTimes通通都使用R,它的商業(yè)效用持續(xù)提高。
R的好處在于它簡單易上手,透過R,你可以從復雜的數據集中篩選你要的數據,從復雜的模型函數中操作數據,建立井然有序的圖表來呈現數字,這些都只需要幾行程序代碼就可以了,打個比方,它就像是好動版本的Excel。
R最棒的資產就是活躍的動態(tài)系統(tǒng),R社群持續(xù)地增加新的軟件包,還有以內建豐富的功能集為特點。目前估計已有超過200萬人使用R,最近的調查顯示,R在數據科學界里,到目前為止最受歡迎的語言,占了回復者的61%(緊追在后的是39%的Python)。
它也吸引了WallStreet的注目。傳統(tǒng)而言,證券分析師在Excel檔從白天看到晚上,但現在R在財務建模的使用率逐漸增加,特別是可視化工具,美國銀行的副總裁NiallO’Conno說,「R讓我們俗氣的表格變得突出」。
在數據建模上,它正在往逐漸成熟的專業(yè)語言邁進,雖然R仍受限于當公司需要制造大規(guī)模的產品時,而有的人說他被其他語言篡奪地位了。
所以接下來他用什么呢?
Python
Python結合了R的快速、處理復雜數據采礦的能力以及更務實的語言等各個特質,迅速地成為主流,Python比起R,學起來更加簡單也更直觀,而且它的生態(tài)系統(tǒng)近幾年來不可思議地快速成長,在統(tǒng)計分析上比起R功能更強。
在數據處理范疇內,通常在規(guī)模與復雜之間要有個取舍,而Python以折衷的姿態(tài)出現。IPythonNotebook(記事本軟件)和NumPy被用來暫時存取較低負擔的工作量,然而Python對于中等規(guī)模的數據處理是相當好的工具;Python擁有豐富的資料族,提供大量的工具包和統(tǒng)計特征。
然而,雖然它的優(yōu)點能夠彌補R的缺點,它仍然不是最高效能的語言,偶爾才能處理龐大規(guī)模、核心的基礎建設。Driscoll是這么認為的。
Julia
Julia仍太過于神秘而尚未被業(yè)界廣泛的采用,但是當談到它的潛力足以搶奪R和Python的寶座時,數據黑客也難以解釋。原因在于Julia是個高階、不可思議的快速和善于表達的語言,比起R要快的許多,比起Python又有潛力處理更具規(guī)模的數據,也很容易上手。
Driscoll說,它就是因為它年輕,才會有可能變成主流又有前景。
Java
Driscoll說,Java和以Java為基礎的架構,是由硅谷里最大的幾家科技公司的核心所建立的,如果你從Twitter、Linkedin或是Facebook里觀察,你會發(fā)現Java對于所有數據工程基礎架構而言,是非?;A的語言。
Java沒有和R和Python一樣好的可視化功能,它也不是統(tǒng)計建模的最佳工具,但是如果你需要建立一個龐大的系統(tǒng)、使用過去的原型,那Java通常會是你最基的選擇。
為了迎合大量數據處理的需求,以Java為基礎的工具群興起。Hadoop為處理一批批數據處理,發(fā)展以Java為基礎的架構關鍵;相較于其他處理工具,Hadoop慢許多,但是無比的準確和可被后端數據庫分析廣泛使用。和Hive搭配的很好,Hive是基于查詢的架構下,運作的相當好。
“Java像是用鋼鐵建造的;Scala則是讓你能夠把它拿進窯烤然后變成鋼的黏土”Driscoll說。
說到當你需要快速的、實時的分析時,你會想到什么?Kafka將會是你的最佳伙伴。其實它已經出現五年有了,只是因為最近串流處理興起才變的越來越流行。
Kafka是從Linkedin內誕生的,是一個特別快速的查詢訊息系統(tǒng)。Kafka的缺點呢?就是它太快了,因此在實時操作時它會犯錯,有時候會漏掉東西。
魚與熊掌不可兼得,「必須要在準確度跟速度之間做一個選擇」,Driscoll說。所以全部在硅谷的科技大公司都利用兩個管道:用Kafka或Storm處理實時數據,接下來打開Hadoop處理一批批處理數據系統(tǒng),這樣聽起來有點麻煩又會有些慢,但好處是,它非常非常精準。
Storm是另一個從Scala寫出來的架構,在硅谷逐漸大幅增加它在串流處理的受歡迎程度,被Twitter并購,這并不意外,因為Twitter對快速事件處理有極大的興趣。
GO是另一個逐漸興起的新進者,從Google開發(fā)出來的,放寬點說,它是從C語言來的,并且在建立強大的基礎架構上,漸漸地成為Java和Python的競爭者。
這么多的軟件可以使用,但我認為不見得每個都一定要會才行,知道你的目標和方向是什么,就選定一個最適合的工具使用吧!可以幫助你提升效率又達到精準的結果。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數據處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數據庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數據分析師:表結構數據 “獲取 - 加工 - 使用” 全流程的賦能者 表結構數據(如數據庫表、Excel 表、CSV 文件)是企業(yè)數字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數據分析師:解鎖表結構數據特征價值的專業(yè)核心 表結構數據(以 “行 - 列” 規(guī)范存儲的結構化數據,如數據庫表、Excel 表、 ...
2025-09-17Excel 導入數據含缺失值?詳解 dropna 函數的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數據時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數據分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數據差異是否 “ ...
2025-09-16CDA 數據分析師:掌控表格結構數據全功能周期的專業(yè)操盤手 表格結構數據(以 “行 - 列” 存儲的結構化數據,如 Excel 表、數據 ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數據分析師:激活表格結構數據價值的核心操盤手 表格結構數據(如 Excel 表格、數據庫表)是企業(yè)最基礎、最核心的數據形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數據爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數據的科學計數法問題 為幫助 Python 數據從業(yè)者解決pd.read_csv讀取長浮點數據時的科學計數法問題 ...
2025-09-12CDA 數據分析師:業(yè)務數據分析步驟的落地者與價值優(yōu)化者 業(yè)務數據分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數據把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數據驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數據分析師與戰(zhàn)略 / 業(yè)務數據分析:概念辨析與協(xié)同價值 在數據驅動決策的體系中,“戰(zhàn)略數據分析”“業(yè)務數據分析” 是企業(yè) ...
2025-09-11Excel 數據聚類分析:從操作實踐到業(yè)務價值挖掘 在數據分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數據中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數據解讀到決策支撐的價值導向 統(tǒng)計模型作為數據分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10