
電商數(shù)據(jù)分析基礎(chǔ)方法:分拆,跟著用戶走_(dá)數(shù)據(jù)分析師
在理解了要選擇怎樣的指標(biāo)來衡量各項業(yè)務(wù)之后,我們可以對業(yè)務(wù)有一個客觀和全面的把握,可是數(shù)字本身無法告訴我們發(fā)生了什么事情,怎樣可以改進(jìn)。為了得到更深入的信息,我們需要用到很多的分析工具,這里我們只介紹最常用和基礎(chǔ)的分析方法:拆分。
最簡單的拆分方法就是不看平均值,看數(shù)據(jù)分布。因為凡 是“總和”或者“平均”類的統(tǒng)計數(shù)據(jù)都會丟失掉很多重要的信息。例如李嘉誠來我們公司參觀,這一時間我們公司辦公室里的“平均資產(chǎn)”就會因為李嘉誠一個人 被抬高到人均幾億身家。如果有人根據(jù)這個“平均資產(chǎn)”數(shù)據(jù)來判定說我們辦公室的人都是豪華游艇的潛在顧客,這自然是荒謬的。
可實際上,我們每天都在做著類似的判斷,比如當(dāng)我們聽到說顧客“平均在線時間”是3分34秒,就可能根據(jù)這個時間來進(jìn)行業(yè)務(wù)決策,例如設(shè)置“停留時間超過3分34秒為高價值流量”,或者設(shè)置系統(tǒng),在用戶停留了3分34秒還沒有下單的話就彈出在線客服服務(wù)窗口。我們設(shè)置這些時間點的根據(jù)是“平均停留時間”,在我們的想象里,我們的每個顧客都有著“平均的”表現(xiàn),停留時間大致都是3分34秒,可實際上真正的顧客訪問時間有長有短,差別巨大:
從上圖我們可以看到絕大部分訪問時間非常短暫,而少數(shù)人訪問了大量時間,綜合起來平均停留時間3分多,用3分34秒來做為一個關(guān)鍵判定點是不合適的。
再舉一個例子,比如我們看到上個月平均訂單金額500元/單,這個月也是500元/單,可能會覺得數(shù)字沒有變化??墒菍嶋H上有可能上個月5萬單都是400~600元,而這個月5萬單則是2萬單300元,2萬單400元,5千單500元,5000單超過2500元 ——客戶購買習(xí)慣已經(jīng)發(fā)生了巨大變化,一方面可能是客戶訂單在變?。赡苁且驗楫a(chǎn)品單價下降,采購數(shù)量減少,或者客戶選擇了比較便宜的替代品),另一方面 出現(xiàn)了一些相對較大的訂單(可能是中小企業(yè)采購,或者是網(wǎng)站擴(kuò)充產(chǎn)品線見效了)?!磾?shù)據(jù)分布可以讓我們更容易發(fā)現(xiàn)這些潛在的變化,及時的做出應(yīng)對。
很多時候我們很難直接從數(shù)據(jù)變化中分析出具體的原因,這時可以考慮拆分因子,將問題一步步細(xì)化找尋原因。
例如網(wǎng)站轉(zhuǎn)化率下降,我們要找原因。因為“轉(zhuǎn)化率”=“訂單”/“流 量”,所以“轉(zhuǎn)化率”下降的原因很可能是“訂單量下降”,“流量上升”,或者兩者皆是。按照這個思路我們可能發(fā)現(xiàn)主要的原因是“流量上升”和“訂單量升幅 不明顯”,那么下面我們就可以來拆解“流量”的構(gòu)成,例如拆成“直接訪問流量”、“廣告訪問流量”和“搜索引擎訪問流量”再看具體是哪部分的流量發(fā)生了變 化,接下來再找原因。這時我們可能看到說是搜索引擎訪問流量上升,那就可以再進(jìn)一步分析是付費關(guān)鍵詞部分上升,還是自然搜索流量上升,如果是自然流量,是 品牌(或者網(wǎng)站名相關(guān))關(guān)鍵詞流量上升,還是其他詞帶來的流量上升——假如最后發(fā)現(xiàn)是非品牌類關(guān)鍵詞帶來的流量上升,那么繼續(xù)尋找原因——市場變化(淡季旺季之類),競爭對手行動,還是自身改變。假如剛好在最近把產(chǎn)品頁面改版過,就可以查一下是不是因為改版讓搜索引擎收錄變多,權(quán)重變高。接下來再分析自己到底哪里做對了幫助網(wǎng)站SEO了(比如把頁面導(dǎo)航欄從圖片換成了文字),把經(jīng)驗記下來為以后改版提供參考;另一方面還要分析哪里沒做好(因為新增流量但是并沒有相應(yīng)增加太多銷售),研究怎樣讓“產(chǎn)品頁面”更具吸引力——因為對很多搜索引擎流量來說,他們對網(wǎng)站的第一印象是產(chǎn)品頁面,而不是首頁。
還有些時候,我們通過拆分步驟來獲取更多信息。
舉兩個例子:
第一個例子:兩個營銷活動,帶來一樣多的流量,一樣多的銷售,是不是說明兩個營銷活動效率差不多?
如果我們把每個營銷活動的流量拆細(xì)去看每一步,就會發(fā)現(xiàn)不一樣的地方。營銷活動B雖然和營銷活動A帶來了等量的流量,可是這部分流量對產(chǎn)品更感興趣,看完著陸頁之后更多的人去看了產(chǎn)品頁面。可惜的是雖然看產(chǎn)品的人很多,最后轉(zhuǎn)化率不高,訂單數(shù)和營銷活動 A一樣。
這里面還可以再深入分析(結(jié)合之前提到的分析方法,和下一章要說的細(xì)分方法),但是光憑直覺,也可以簡單的得出一些猜測來,例如兩個營銷活動的顧客習(xí)慣不太一樣,營銷活動 B的著陸頁設(shè)計更好,營銷活動 B的顧客更符合我們的目標(biāo)客戶描述、更懂產(chǎn)品——但是我們的價格沒有優(yōu)勢等等這些猜想是我們深入進(jìn)行分析,得出行動方案的起點。至少,它可以幫助我們更快的累計經(jīng)驗,下次設(shè)計營銷活動的時候會更有的放矢,而不是僅僅寫一個簡單report說這兩個營銷活動效果一樣就結(jié)案了。(注:這是個簡化的例子,實際上還可以分更多層)
第二個例子可能更常見一些,比如網(wǎng)站轉(zhuǎn)化率下降,我們可以拆成這樣的漏斗:
這樣拆好之后,更能清楚地看到到底是哪一步的轉(zhuǎn)化率發(fā)生了變化。有可能是訪客質(zhì)量下降,都在著陸頁流失了,也可能是“購物車–>登錄”流失了(如果你把運費放到購物車中計算,很可能就看到這一步流失率飆升),這樣拆細(xì)之后更方便我們分析。
曾經(jīng)有一個例子就是轉(zhuǎn)化率下降,市場部查流量質(zhì)量發(fā)現(xiàn)沒問題,產(chǎn)品經(jīng)理查價格競爭力也沒問題——最后發(fā)現(xiàn)是技術(shù)部為了防止惡意注冊,在登錄頁面加了驗證碼(而且那個驗證碼極度復(fù)雜),降低了“登錄頁面–>填寫訂單信息“這一步的轉(zhuǎn)化率。
很多時候,我們需要把用戶行為數(shù)據(jù)拆分開,看不同族群的人有什么不同的表現(xiàn),通過比較異同來獲取更多的洞察。從實踐出發(fā),客戶族群細(xì)分的方法主要有三種:
按照客戶屬性細(xì)分:根據(jù)客戶“是誰”來劃分族群,例如把客戶分成“新客戶”和“老客戶”。按照客戶行為來細(xì)分:根據(jù)客戶上網(wǎng)行為來細(xì)分,例如把客戶分成“瀏覽服裝專區(qū)的客戶”和“瀏覽數(shù)碼專區(qū)的客戶”。很多時候“根據(jù)客戶行為”和“根據(jù)客戶屬性”這兩者會混在一起,比如一個客戶的行為是“每個月都來買一次東西而且只買最貴的”,可能我們就會在數(shù)據(jù)庫里給他標(biāo)記上“有錢人”,之后“有錢人”就成了這個客戶的屬性之一。按照最終結(jié)果來細(xì)分:其實是“按照客戶行為來細(xì)分”的一種,但是它適用性非常廣,而且用起來非常方便,所以單獨拿出來講一下。
對于這個細(xì)分方法,本質(zhì)上就是根據(jù)結(jié)果把流量分成“好人”和“壞人”,然后一路比較“好人”和“壞人”從接觸到最后轉(zhuǎn)化或離開這整個過程中所經(jīng)歷過的事情有沒有什么顯著的不同,如果有,則進(jìn)一步深入考慮這些不同點是否就是造成他們一些是“好人”一些是”壞人“的原因,再想辦法優(yōu)化這些經(jīng)歷,盡可能增加”好人“這個族群。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
用 SQL 生成逆向回滾 SQL:數(shù)據(jù)操作的 “后悔藥” 指南? 在數(shù)據(jù)庫操作中,誤刪數(shù)據(jù)、錯改字段或誤執(zhí)行批量更新等問題時有發(fā)生。 ...
2025-07-14如何考取數(shù)據(jù)分析師證書:以 CDA 為例? ? 在數(shù)字化浪潮席卷各行各業(yè)的當(dāng)下,數(shù)據(jù)分析師已然成為企業(yè)挖掘數(shù)據(jù)價值、驅(qū)動決策的 ...
2025-07-14t檢驗與Wilcoxon檢驗的選擇:何時用t.test,何時用wilcox.test? t 檢驗與 Wilcoxon 檢驗的選擇:何時用 t.test,何時用 wilcox. ...
2025-07-14AI 浪潮下的生存與進(jìn)階: CDA數(shù)據(jù)分析師—開啟新時代職業(yè)生涯的鑰匙(深度研究報告、發(fā)展指導(dǎo)白皮書) 發(fā)布機(jī)構(gòu):CDA數(shù)據(jù)科 ...
2025-07-13LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07