
感知機(jī)(Perceptron)或者叫做感知器,是Frank Rosenblatt在1957年就職于Cornell航空實(shí)驗(yàn)室(Cornell Aeronautical Laboratory)時(shí)所發(fā)明的一種人工神經(jīng)網(wǎng)絡(luò),是機(jī)器學(xué)習(xí)領(lǐng)域最基礎(chǔ)的模型,被譽(yù)為機(jī)器學(xué)習(xí)的敲門(mén)磚。
感知機(jī)是生物神經(jīng)細(xì)胞的簡(jiǎn)單抽象,可以說(shuō)是形式最簡(jiǎn)單的一種前饋神經(jīng)網(wǎng)絡(luò),是一種二元線性分類模型。感知機(jī)的輸入為實(shí)例的特征向量,輸出為實(shí)例的類別取+1和-1.雖然現(xiàn)在看來(lái)感知機(jī)的分類模型,大多數(shù)情況下的泛化能力不是很強(qiáng),但是感知機(jī)是最古老的分類方法之一,是神經(jīng)網(wǎng)絡(luò)的雛形,同時(shí)也是支持向量機(jī)的基礎(chǔ),如果能夠?qū)?a href='/map/ganzhiji/' style='color:#000;font-size:inherit;'>感知機(jī)研究透徹,對(duì)我們支持向量機(jī)、神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)也有很大幫助。
一、感知機(jī)模型
其中x為特征向量,w和b為感知機(jī)模型的參數(shù)。
感知機(jī)的幾何解釋:線性方程
二·、感知機(jī)算法
1.原始形式
from random import randint import numpy as np import matplotlib.pyplot as plt class TrainDataLoader: def __init__(self): pass def GenerateRandomData(self, count, gradient, offset): x1 = np.linspace(1, 5, count) x2 = gradient*x1 + np.random.randint(-10,10,*x1.shape)+offset dataset = [] y = [] for i in range(*x1.shape): dataset.append([x1[i], x2[i]]) real_value = gradient*x1[i]+offset if real_value > x2[i]: y.append(-1) else: y.append(1) return x1,x2,np.mat(y),np.mat(dataset) class SimplePerceptron: def __init__(self, train_data = [], real_result = [], eta = 1): self.w = np.zeros([1, len(train_data.T)], int) self.b = 0 self.eta = eta self.train_data = train_data self.real_result = real_result def nomalize(self, x): if x > 0 : return 1 else : return -1 def model(self, x): # Here are matrix dot multiply get one value y = np.dot(x, self.w.T) + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def update(self, x, y): # w = w + n*y_i*x_i self.w = self.w + self.eta*y*x # b = b + n*y_i self.b = self.b + self.eta*y def loss(slef, fx, y): return fx.astype(int)*y def train(self, count): update_count = 0 while count > 0: # count-- count = count - 1 if len(self.train_data) <= 0: print("exception exit") break # random select one train data index = randint(0,len(self.train_data)-1) x = self.train_data[index] y = self.real_result.T[index] # wx+b predict_v, linear_y_v = self.model(x) # y_i*(wx+b) > 0, the classify is correct, else it's error if self.loss(y, linear_y_v) > 0: continue update_count = update_count + 1 self.update(x, y) print("update count: ", update_count) pass def verify(self, verify_data, verify_result): size = len(verify_data) failed_count = 0 if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] if self.loss(y, self.model(x)[1]) > 0: continue failed_count = failed_count + 1 success_rate = (1.0 - (float(failed_count)/size))*100 print("Success Rate: ", success_rate, "%") print("All input: ", size, " failed_count: ", failed_count) def predict(self, predict_data): size = len(predict_data) result = [] if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] result.append(self.model(x)[0]) return result if __name__ == "__main__": # Init some parameters gradient = 2 offset = 10 point_num = 1000 train_num = 50000 loader = TrainDataLoader() x, y, result, train_data = loader.GenerateRandomData(point_num, gradient, offset) x_t, y_t, test_real_result, test_data = loader.GenerateRandomData(100, gradient, offset) # First training perceptron = SimplePerceptron(train_data, result) perceptron.train(train_num) perceptron.verify(test_data, test_real_result) print("T1: w:", perceptron.w," b:", perceptron.b) # Draw the figure # 1. draw the (x,y) points plt.plot(x, y, "*", color='gray') plt.plot(x_t, y_t, "+") # 2. draw y=gradient*x+offset line plt.plot(x,x.dot(gradient)+offset, color="red") # 3. draw the line w_1*x_1 + w_2*x_2 + b = 0 plt.plot(x, -(x.dot(float(perceptron.w.T[0]))+float(perceptron.b))/float(perceptron.w.T[1]) , color='green') plt.show()2.對(duì)偶形式
from random import randint import numpy as np import matplotlib.pyplot as plt class TrainDataLoader: def __init__(self): pass def GenerateRandomData(self, count, gradient, offset): x1 = np.linspace(1, 5, count) x2 = gradient*x1 + np.random.randint(-10,10,*x1.shape)+offset dataset = [] y = [] for i in range(*x1.shape): dataset.append([x1[i], x2[i]]) real_value = gradient*x1[i]+offset if real_value > x2[i]: y.append(-1) else: y.append(1) return x1,x2,np.mat(y),np.mat(dataset) class SimplePerceptron: def __init__(self, train_data = [], real_result = [], eta = 1): self.alpha = np.zeros([train_data.shape[0], 1], int) self.w = np.zeros([1, train_data.shape[1]], int) self.b = 0 self.eta = eta self.train_data = train_data self.real_result = real_result self.gram = np.matmul(train_data[0:train_data.shape[0]], train_data[0:train_data.shape[0]].T) def nomalize(self, x): if x > 0 : return 1 else : return -1 def train_model(self, index): temp = 0 y = self.real_result.T # Here are matrix dot multiply get one value for i in range(len(self.alpha)): alpha = self.alpha[i] if alpha == 0: continue gram_value = self.gram[index].T[i] temp = temp + alpha*y[i]*gram_value y = temp + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def verify_model(self, x): # Here are matrix dot multiply get one value y = np.dot(x, self.w.T) + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def update(self, index, x, y): # alpha = alpha + 1 self.alpha[index] = self.alpha[index] + 1 # b = b + n*y_i self.b = self.b + self.eta*y def loss(slef, fx, y): return fx.astype(int)*y def train(self, count): update_count = 0 train_data_num = self.train_data.shape[0] print("train_data:", self.train_data) print("Gram:",self.gram) while count > 0: # count-- count = count - 1 if train_data_num <= 0: print("exception exit") break # random select one train data index = randint(0, train_data_num-1) if index >= train_data_num: print("exceptrion get the index") break; x = self.train_data[index] y = self.real_result.T[index] # w = \sum_{i=1}^{N}\alpha_iy_iGram[i] # wx+b predict_v, linear_y_v = self.train_model(index) # y_i*(wx+b) > 0, the classify is correct, else it's error if self.loss(y, linear_y_v) > 0: continue update_count = update_count + 1 self.update(index, x, y) for i in range(len(self.alpha)): x = self.train_data[i] y = self.real_result.T[i] self.w = self.w + float(self.alpha[i])*x*float(y) print("update count: ", update_count) pass def verify(self, verify_data, verify_result): size = len(verify_data) failed_count = 0 if size <= 0: pass for i in range(size-1): x = verify_data[i] y = verify_result.T[i] if self.loss(y, self.verify_model(x)[1]) > 0: continue failed_count = failed_count + 1 success_rate = (1.0 - (float(failed_count)/size))*100 print("Success Rate: ", success_rate, "%") print("All input: ", size, " failed_count: ", failed_count) def predict(self, predict_data): size = len(predict_data) result = [] if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] result.append(self.model(x)[0]) return result if __name__ == "__main__": # Init some parameters gradient = 2 offset = 10 point_num = 1000 train_num = 1000 loader = TrainDataLoader() x, y, result, train_data = loader.GenerateRandomData(point_num, gradient, offset) x_t, y_t, test_real_result, test_data = loader.GenerateRandomData(100, gradient, offset) # train_data = np.mat([[3,3],[4,3],[1,1]]) # First training perceptron = SimplePerceptron(train_data, result) perceptron.train(train_num) perceptron.verify(test_data, test_real_result) print("T1: w:", perceptron.w," b:", perceptron.b) # Draw the figure # 1. draw the (x,y) points plt.plot(x, y, "*", color='gray') plt.plot(x_t, y_t, "+") # 2. draw y=gradient*x+offset line plt.plot(x,x.dot(gradient)+offset, color="red") # 3. draw the line w_1*x_1 + w_2*x_2 + b = 0 plt.plot(x, -(x.dot(float(perceptron.w.T[0]))+float(perceptron.b))/float(perceptron.w.T[1]) , color='green') plt.show()
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10