
近來數(shù)據(jù)記錄和規(guī)模屬性都在急劇增長,由于大多數(shù)數(shù)據(jù)挖掘算法都是直接逐列處理數(shù)據(jù),因此導(dǎo)致算法越來越慢。為了保證減少數(shù)據(jù)列數(shù)的同時,丟失的數(shù)據(jù)信息盡可能少,
數(shù)據(jù)降維處理算法應(yīng)運(yùn)而生。
一、降維的概念和本質(zhì)
機(jī)器學(xué)習(xí)領(lǐng)域中的降維就是指采用某種映射方法,將原高維空間中的數(shù)據(jù)點映射到低維度的空間中。降維的本質(zhì)是學(xué)習(xí)一個映射函數(shù) f : x->y,其中x是原始數(shù)據(jù)點的表達(dá),目前最多使用向量表達(dá)形式。 y是數(shù)據(jù)點映射后的低維向量表達(dá),通常y的維度小于x的維度(當(dāng)然提高維度也是可以的)。
二、降維的作用:
1.降低時間復(fù)雜度和空間復(fù)
2.節(jié)省了提取不必要特征的開銷
3.去掉數(shù)據(jù)集中夾雜的噪音
5.較簡單的模型在小數(shù)據(jù)集上有更強(qiáng)的魯棒性
6.當(dāng)數(shù)據(jù)能有較少的特征進(jìn)行解釋,我們可以更好 的解釋數(shù)據(jù),使得我們可以提取知識。
7.實現(xiàn)數(shù)據(jù)可視化
三、常用的降維方法
1.PCA
PCA是不考慮樣本類別輸出的無監(jiān)督降維技術(shù)。
PCA的算法步驟:
設(shè)有m條n維數(shù)據(jù)。
1)將原始數(shù)據(jù)按列組成n行m列矩陣X
2)將X的每一行(代表一個屬性字段)進(jìn)行零均值化,即減去這一行的均值
3)求出協(xié)方差矩陣
4)求出協(xié)方差矩陣的特征值及對應(yīng)的特征向量
5)將特征向量按對應(yīng)特征值大小從上到下按行排列成矩陣,取前k行組成矩陣P
6)即為降維到k維后的數(shù)據(jù)
2.LDA
LDA是一種監(jiān)督學(xué)習(xí)的降維技術(shù),也就是說它的數(shù)據(jù)集的每個樣本是有類別輸出的。這點和PCA不同。LDA的思想可以用一句話概括,就是“投影后類內(nèi)方差最小,類間方差最大”。什么意思呢? 我們要將數(shù)據(jù)在低維度上進(jìn)行投影,投影后希望每一種類別數(shù)據(jù)的投影點盡可能的接近,而不同類別的數(shù)據(jù)的類別中心之間的距離盡可能的大。
LDA算法步驟:
1) 計算類內(nèi)散度矩陣
2) 計算類間散度矩陣
3) 計算矩陣
4)計算的最大的d個特征值和對應(yīng)的d個特征向量,得到投影矩陣[Math Processing Error]
5) 對樣本集中的每一個樣本特征,轉(zhuǎn)化為新的樣本
6) 得到輸出樣本集
3.局部線性嵌入 (LLE)
Locally linear embedding(LLE)是一種非線性降維算法,即使數(shù)據(jù)降維后,也能較好地保持原有 流形結(jié)構(gòu) 。LLE稱得上是流形學(xué)習(xí)方法最經(jīng)典的工作之一,后續(xù)很多的流形學(xué)習(xí)、降維方法都與LLE有密切聯(lián)系。
如下圖,使用LLE將三維數(shù)據(jù)(b)映射到二維(c)之后,映射后的數(shù)據(jù)仍能保持原有的數(shù)據(jù)流形(紅色的點互相接近,藍(lán)色的也互相接近),說明LLE有效地保持了數(shù)據(jù)原有的流行結(jié)構(gòu)。
但是LLE在有些情況下也并不適用,如果數(shù)據(jù)分布在整個封閉的球面上,LLE則不能將它映射到二維空間,且不能保持原有的數(shù)據(jù)流形。那么我們在處理數(shù)據(jù)中,首先假設(shè)數(shù)據(jù)不是分布在閉合的球面或者橢球面上。
4.拉普拉斯特征映射(Laplacian Eigenmaps)
Laplacian Eigenmaps 是用局部的角度去構(gòu)建數(shù)據(jù)之間的關(guān)系。
使用時算法具體步驟為:
步驟1:構(gòu)建圖
使用某一種方法來將所有的點構(gòu)建成一個圖,例如使用KNN算法,將每個點最近的K個點連上邊。K是一個預(yù)先設(shè)定的值。
步驟2:確定權(quán)重
確定點與點之間的權(quán)重大小,例如選用熱核函數(shù)來確定,如果點i和點j相連,那么它們關(guān)系的權(quán)重設(shè)定為:
使用最小的m個非零特征值對應(yīng)的特征向量作為降維后的結(jié)果輸出。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10