
PCA在機器學習中很常用,是一種無參數(shù)的數(shù)據(jù)降維方法。PCA步驟:
PCA通過線性變換將原始數(shù)據(jù)變換為一組各維度線性無關的表示,可用于提取數(shù)據(jù)的主要特征分量,常用于高維數(shù)據(jù)的降維。
我們知道PCA是一種數(shù)據(jù)降維的方法,在降低維度的過程中,我們當然想要保留更多的特征,PCA就是經(jīng)過數(shù)學推導,保留最多特征同時降維的方法。
在推導之前要先知道幾個基礎知識:
兩個維數(shù)相同的向量的內(nèi)積被定義為:
假設A和B是兩個n維向量,我們知道n維向量可以等價表示為n維空間中的一條從原點發(fā)射的有向線段,為了簡單起見我們假設A和B均為二維向量,則A=(x1,y1),B=(x2,y2)。則在二維平面上A和B可以用兩條發(fā)自原點的有向線段表示,見下圖:
現(xiàn)在我們從A點向B所在直線引一條垂線。我們知道垂線與B的交點叫做A在B上的投影,再設A與B的夾角是a,則投影的矢量長度為|A|cos(a),其中|A|是向量A的模,也就是A線段的標量長度。
到這里還是看不出內(nèi)積和這東西有什么關系,不過如果我們將內(nèi)積表示為另一種我們熟悉的形式:
現(xiàn)在事情似乎是有點眉目了:A與B的內(nèi)積等于A到B的投影長度乘以B的模。再進一步,如果我們假設B的模為1,即讓|B|=1,那么就變成了:
也就是說,設向量B的模為1,則A與B的內(nèi)積值等于A向B所在直線投影的矢量長度!這就是內(nèi)積的一種幾何解釋,也是我們得到的第一個重要結(jié)論。在后面的推導中,將反復使用這個結(jié)論。
下面我們繼續(xù)在二維空間內(nèi)討論向量。上文說過,一個二維向量可以對應二維笛卡爾直角坐標系中從原點出發(fā)的一個有向線段。例如下面這個向量:
在代數(shù)表示方面,我們經(jīng)常用線段終點的點坐標表示向量,例如上面的向量可以表示為(3,2),這是我們再熟悉不過的向量表示。
我們列舉的例子中基是正交的(即內(nèi)積為0,或直觀說相互垂直),但可以成為一組基的唯一要求就是線性無關,非正交的基也是可以的。不過因為正交基有較好的性質(zhì),所以一般使用的基都是正交的。
一般的,如果我們有M個N維向量,想將其變換為由R個N維向量表示的新空間中,那么首先將R個基按行組成矩陣A,然后將向量按列組成矩陣B,那么兩矩陣的乘積AB就是變換結(jié)果,其中AB的第m列為A中第m列變換后的結(jié)果。(新基按行,向量按列)
特別要注意的是,這里R可以小于N,而R決定了變換后數(shù)據(jù)的維數(shù)。也就是說,我們可以將一N維數(shù)據(jù)變換到更低維度的空間中去,變換后的維度取決于基的數(shù)量。因此這種矩陣相乘的表示也可以表示降維變換。
最后,上述分析同時給矩陣相乘找到了一種物理解釋:兩個矩陣相乘的意義是將右邊矩陣中的每一列列向量變換到左邊矩陣中每一行行向量為基所表示的空間中去。更抽象的說,一個矩陣可以表示一種線性變換。很多同學在學線性代數(shù)時對矩陣相乘的方法感到奇怪,但是如果明白了矩陣相乘的物理意義,其合理性就一目了然了。
我們從上面的矩陣乘法與基變換可以看出,當新基的維數(shù)小于原來的維數(shù)時可以做到數(shù)據(jù)的降維,但是究竟如何選擇新基就是我們現(xiàn)在面臨的問題,我們想要選擇一個維數(shù)更小的新基,同時新基保留有更多的信息。我們知道矩陣向新基投影的形式,也就是PCA是將一組N維的特征投影到K維(K
那么怎么衡量更多的特征,也就是投影后盡量少的重疊,投影值盡可能分散。
從二維到一維的降維,只需要找到一個一維基使得方差最大,但是三維降到二維呢?我們需要找到兩個基讓這個三維數(shù)據(jù)投影到兩個基上,如果我們找方差最大的兩個基,會發(fā)現(xiàn)他們完全一樣或者線性相關,這和一個基沒什么區(qū)別,不能表達更多的信息,所以我們需要添加限制條件,我們希望這兩個基彼此線性無關,擴展到K個基也是一樣。
當協(xié)方差為0時,表示兩個字段完全獨立。為了讓協(xié)方差為0,我們選擇第二個基時只能在與第一個基正交的方向上選擇。因此最終選擇的兩個方向一定是正交的。
至此,我們得到了降維問題的優(yōu)化目標:將一組N維向量降為K維(K大于0,小于N),其目標是選擇K個單位(模為1)正交基,使得原始數(shù)據(jù)變換到這組基上后,各字段兩兩間協(xié)方差為0,而字段的方差則盡可能大(在正交的約束下,取最大的K個方差)。
在我的文章特征值和特征向量中說過,特征值反映了矩陣對于特征向量的拉伸程度,只有拉伸而沒有旋轉(zhuǎn),也就是在特征向量方向上的作用程度,所以在PCA中我們選取前K個特征向量組成新基進行投影,就是因為原特征在前K個特征向量有最大的作用程度。
投影過后可以保留更多的信息,作用程度是用特征值表示的,所以我們可以使用下面的式子表示貢獻率,貢獻率是表示投影后信息的保留程度的變量,也就是特征值的總和比上前K個特征值,一般來說貢獻率要大于85%。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10