
聚類就是將某個數(shù)據(jù)集中的樣本按照之間的某些區(qū)別劃分為若干個不相交的子集,我們把每個子集稱為一個“簇”。劃分完成后,每個簇都可能對應(yīng)著某一個類別;需說明的是,這些概念對聚類算法而言事先是未知的,聚類過程僅能自動形成簇結(jié)構(gòu),簇對應(yīng)的概念語義由使用者來把握和命名。
有關(guān)聚類的算法很多,下面這張表格引用自Scikit-learn 官方文檔,從這張表中可以看到各個聚類算法之間的不同以及對不同數(shù)據(jù)及劃分時的匹配程度,和優(yōu)劣性。我們在選擇聚類算法的時候,首先一定要熟悉自己的數(shù)據(jù),大概了解自己的數(shù)據(jù)是怎樣的一個分布和結(jié)構(gòu)。這樣,有利于我們選擇合適的算法,從而得到優(yōu)秀的聚類結(jié)果。這篇文章僅僅介紹K-means聚類算法,以及它的推廣版K-mean++算法。
k-means算法是使用最廣泛的聚類算法之一。聚類的目的是把相似的樣本聚到一起,把不相似的樣本分開。對于給定的樣本集,按照樣本之間的距離大小,將樣本集劃分為K個簇。讓簇內(nèi)的點盡量緊密的連在一起,而讓簇間的距離盡量的大。
K-means算法旨在選擇一個質(zhì)心, 能夠最小化慣性或簇內(nèi)平方和的標準:
$$\sum{i=0}^{n} \min _{\mu{j} \in C}\left(\left|x{i}-\mu{j}\right|^{2}\right)$$
K-means算法原理分析
k-means算法是聚類分析中使用最廣泛的算法之一。它把n個對象根據(jù)它們的屬性分為k個簇以便使得所獲得的簇滿足:同一簇中的對象相似度較高;而不同簇中的對象相似度較小。 k-means算法的基本過程如下所示:
下圖是Scikit-learn具體實現(xiàn)代碼:
print(__doc__) # Author: Phil Roth# License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clustersy_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed datatransformation = [[0.60834549, -0.63667341], [-0.40887718, 0.85253229]]X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso)plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred)plt.title("Anisotropicly Distributed Blobs") # Different varianceX_varied, y_varied = make_blobs(n_samples=n_samples,cluster_std=[1.0, 2.5, 0.5],random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied)plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobsX_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10]))y_pred = KMeans(n_clusters=3,random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1],c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
K-means算法的優(yōu)缺點
優(yōu)點:簡單,易于理解和實現(xiàn);收斂快,一般僅需5-10次迭代即可,高效
缺點:
K-means算法的優(yōu)缺點
優(yōu)點:簡單,易于理解和實現(xiàn);收斂快,一般僅需5-10次迭代即可,高效
缺點:
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10CDA 數(shù)據(jù)分析師:商業(yè)數(shù)據(jù)分析實踐的落地者與價值創(chuàng)造者 商業(yè)數(shù)據(jù)分析的價值,最終要在 “實踐” 中體現(xiàn) —— 脫離業(yè)務(wù)場景的分 ...
2025-09-10機器學習解決實際問題的核心關(guān)鍵:從業(yè)務(wù)到落地的全流程解析 在人工智能技術(shù)落地的浪潮中,機器學習作為核心工具,已廣泛應(yīng)用于 ...
2025-09-09SPSS 編碼狀態(tài)區(qū)域中 Unicode 的功能與價值解析 在 SPSS(Statistical Product and Service Solutions,統(tǒng)計產(chǎn)品與服務(wù)解決方案 ...
2025-09-09