
作者 | Josh Thompson
來源 | 數(shù)據(jù)派THU
Choosing the Right Clustering Algorithm for your Dataset - KDnuggets
聚類算法十分容易上手,但是選擇恰當(dāng)?shù)木垲愃惴ú⒉皇且患菀椎氖隆?/span>
數(shù)據(jù)聚類是搭建一個(gè)正確數(shù)據(jù)模型的重要步驟。數(shù)據(jù)分析應(yīng)當(dāng)根據(jù)數(shù)據(jù)的共同點(diǎn)整理信息。然而主要問題是,什么通用性參數(shù)可以給出最佳結(jié)果,以及什么才能稱為“最佳”。
本文適用于菜鳥數(shù)據(jù)科學(xué)家或想提升聚類算法能力的專家。下文包括最廣泛使用的聚類算法及其概況。根據(jù)每種方法的特殊性,本文針對(duì)其應(yīng)用提出了建議。
四種基本算法以及如何選擇
聚類模型可以分為四種常見的算法類別。盡管零零散散的聚類算法不少于100種,但是其中大部分的流行程度以及應(yīng)用領(lǐng)域相對(duì)有限。
基于整個(gè)數(shù)據(jù)集對(duì)象間距離計(jì)算的聚類方法,稱為基于連通性的聚類(connectivity-based)或層次聚類。根據(jù)算法的“方向”,它可以組合或反過來分解信息——聚集和分解的名稱正是源于這種方向的區(qū)別。最流行和合理的類型是聚集型,你可以從輸入所有數(shù)據(jù)開始,然后將這些數(shù)據(jù)點(diǎn)組合成越來越大的簇,直到達(dá)到極限。
層次聚類的一個(gè)典型案例是植物的分類。數(shù)據(jù)集的“樹”從具體物種開始,以一些植物王國(guó)結(jié)束,每個(gè)植物王國(guó)都由更小的簇組成(門、類、階等)。
層次聚類算法將返回樹狀圖數(shù)據(jù),該樹狀圖展示了信息的結(jié)構(gòu),而不是集群上的具體分類。這樣的特點(diǎn)既有好處,也有一些問題:算法會(huì)變得很復(fù)雜,且不適用于幾乎沒有層次的數(shù)據(jù)集。這種算法的性能也較差:由于存在大量的迭代,因此整個(gè)處理過程浪費(fèi)了很多不必要的時(shí)間。最重要的是,這種分層算法并不能得到精確的結(jié)構(gòu)。
同時(shí),從預(yù)設(shè)的類別一直分解到所有的數(shù)據(jù)點(diǎn),類別的個(gè)數(shù)不會(huì)對(duì)最終結(jié)果產(chǎn)生實(shí)質(zhì)性影響,也不會(huì)影響預(yù)設(shè)的距離度量,該距離度量粗略測(cè)量和近似估計(jì)得到的。
根據(jù)我的經(jīng)驗(yàn),由于簡(jiǎn)單易操作,基于質(zhì)心的聚類(Centroid-based)是最常出現(xiàn)的模型。 該模型旨在將數(shù)據(jù)集的每個(gè)對(duì)象劃分為特定的類別。 簇?cái)?shù)(k)是隨機(jī)選擇的,這可能是該方法的最大問題。 由于與k最近鄰居(kNN)相似,該k均值算法在機(jī)器學(xué)習(xí)中特別受歡迎。
計(jì)算過程包括多個(gè)步驟。首先,輸入數(shù)據(jù)集的目標(biāo)類別數(shù)。聚類的中心應(yīng)當(dāng)盡可能分散,這有助于提高結(jié)果的準(zhǔn)確性。
其次,該算法找到數(shù)據(jù)集的每個(gè)對(duì)象與每個(gè)聚類中心之間的距離。最小坐標(biāo)距離(若使用圖形表示)確定了將對(duì)象移動(dòng)到哪個(gè)群集。
之后,將根據(jù)類別中所有點(diǎn)的坐標(biāo)平均值重新計(jì)算聚類的中心。重復(fù)算法的上一步,但是計(jì)算中要使用簇的新中心點(diǎn)。除非達(dá)到某些條件,否則此類迭代將繼續(xù)。例如,當(dāng)簇的中心距上次迭代沒有移動(dòng)或移動(dòng)不明顯時(shí),聚類將結(jié)束。
盡管數(shù)學(xué)和代碼都很簡(jiǎn)單,但k均值仍有一些缺點(diǎn),因此我們無法在所有情景中使用它。缺點(diǎn)包括:
相比之下,期望最大化算法可以避免那些復(fù)雜情況,同時(shí)提供更高的準(zhǔn)確性。簡(jiǎn)而言之,它計(jì)算每個(gè)數(shù)據(jù)集點(diǎn)與我們指定的所有聚類的關(guān)聯(lián)概率。用于該聚類模型的主要工具是高斯混合模型(GMM)–假設(shè)數(shù)據(jù)集的點(diǎn)服從高斯分布。
k-means算法可以算是EM原理的簡(jiǎn)化版本。它們都需要手動(dòng)輸入簇?cái)?shù),這是此類方法要面對(duì)的主要問題。除此之外,計(jì)算原理(對(duì)于GMM或k均值)很簡(jiǎn)單:簇的近似范圍是在每次新迭代中逐漸更新的。
與基于質(zhì)心的模型不同,EM算法允許對(duì)兩個(gè)或多個(gè)聚類的點(diǎn)進(jìn)行分類-它僅展示每個(gè)事件的可能性,你可以使用該事件進(jìn)行進(jìn)一步的分析。更重要的是,每個(gè)聚類的邊界組成了不同度量的橢球體。這與k均值聚類不同,k均值聚類方法用圓形表示。但是,該算法對(duì)于不服從高斯分布的數(shù)據(jù)集根本不起作用。這也是該方法的主要缺點(diǎn):它更適用于理論問題,而不是實(shí)際的測(cè)量或觀察。
最后,基于數(shù)據(jù)密度的聚類成為數(shù)據(jù)科學(xué)家心中的最愛。
這個(gè)名字已經(jīng)包括了模型的要點(diǎn)——將數(shù)據(jù)集劃分為聚類,計(jì)數(shù)器會(huì)輸入ε參數(shù),即“鄰居”距離。因此,如果目標(biāo)點(diǎn)位于半徑為ε的圓(球)內(nèi),則它屬于該集群。
具有噪聲的基于密度的聚類方法(DBSCAN)將逐步檢查每個(gè)對(duì)象,將其狀態(tài)更改為“已查看”,將其劃分到具體的類別或噪聲中,直到最終處理整個(gè)數(shù)據(jù)集。用DBSCAN確定的簇可以具有任意形狀,因此非常精確。此外,該算法無需人為地設(shè)定簇?cái)?shù) —— 算法可以自動(dòng)決定。
盡管如此,DBSCAN也有一些缺點(diǎn)。如果數(shù)據(jù)集由可變密度簇組成,則該方法的結(jié)果較差;如果對(duì)象的位置太近,并且無法輕易估算出ε參數(shù),那么這也不是一個(gè)很好的選擇。
總而言之,我們并不能說選擇了錯(cuò)誤的算法,只能說其中有些算法會(huì)更適合特定的數(shù)據(jù)集結(jié)構(gòu)。為了采用最佳的(看起來更恰當(dāng)?shù)模┧惴ǎ阈枰媪私馑鼈兊膬?yōu)缺點(diǎn)。
例如,如果某些算法不符合數(shù)據(jù)集規(guī)范,則可以從一開始就將其排除在外。為避免繁瑣的工作,你可以花一些時(shí)間來記住這些信息,而無需反復(fù)試驗(yàn)并從自己的錯(cuò)誤中學(xué)習(xí)。
我們希望本文能幫助你在初始階段選擇最好的算法。繼續(xù)這了不起的工作吧!
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10