
讓垃圾自動分類
近期垃圾分類成為了一個熱門話題,原來直接一次性扔掉的垃圾,現(xiàn)在都需要分門別類進行投放。從今年7月1日起,新的《上海市生活垃圾管理條例》正式開始施行,號稱史上最嚴的垃圾分類就要來了。我們以后在扔垃圾前都要先將垃圾仔細分成可回收物、有害垃圾、濕垃圾和干垃圾四個類別,如果分錯還會被罰款。
垃圾分類可以更好地保護我們的環(huán)境衛(wèi)生,為了讓大家能夠正確對垃圾進行分類,官方發(fā)布了垃圾分類指南,列舉了每種類別對應(yīng)的常見垃圾,大家可以對照著進行分類投放。此外,腦洞大開的網(wǎng)友們也另辟蹊徑,提供了各種有意思的分類思路。
在日常生活中,每個類別的垃圾往往包含了各式各樣的內(nèi)容,人們在分類投放的時候難免會出現(xiàn)偏差,這個時候如果有一個分類神器對垃圾拍個照就能告訴我們是什么類別就好了。
當前人工智能飛速發(fā)展,我們能否利用AI技術(shù)來對垃圾自動分類,實現(xiàn)上面提到的設(shè)想呢?為了回答這個問題,在今天的文章中,我們將從人工智能的角度出發(fā),嘗試利用深度學(xué)習(xí)技術(shù)來構(gòu)建一個垃圾自動分類器,同時也會進一步介紹AI垃圾分類遇到的挑戰(zhàn)和一些思考。
“垃圾”圖像數(shù)據(jù)準備
為了實現(xiàn)一個理想的垃圾自動分類器,需要有一個已經(jīng)分好類別的“垃圾”圖像數(shù)據(jù)集作為訓(xùn)練的基礎(chǔ)。然而當前并沒有這樣一個可以直接使用的數(shù)據(jù)集,所以我們首先自己動手收集海量的“垃圾”圖像并為每張圖像標注上相應(yīng)的類別。
數(shù)據(jù)集的收集一直是一件耗時耗力的工作,為了快速便捷地完成“垃圾”圖像數(shù)據(jù)集的收集,我們依據(jù)官方發(fā)布的垃圾分類指南上每一類所包含的垃圾名稱,通過在百度圖片上爬取名稱對應(yīng)的圖像來實現(xiàn)。官方發(fā)布的垃圾分類指南如下圖所示。
在實際的應(yīng)用場景中,待分類的樣本往往是不可控的,所以一般會增加“其他”這個類別用來收留各種異常樣本。在垃圾分類中,除可回收物、有害垃圾和濕垃圾外都屬于干垃圾,所以干垃圾已經(jīng)扮演了“其他”的角色。我們的“垃圾”圖像數(shù)據(jù)集最終分為可回收垃圾、有害垃圾、濕垃圾和干垃圾四個類別。數(shù)據(jù)集的部分圖像如下圖所示。
垃圾自動分類器
垃圾自動分類本質(zhì)上是一個圖像分類問題,當前基于深度卷積神經(jīng)網(wǎng)絡(luò)的圖像分類算法發(fā)展很快,各種方法層出不窮。下面我們先回顧這些分類網(wǎng)絡(luò)的演進思路,再進一步將分類算法應(yīng)用于垃圾分類,介紹構(gòu)建一個垃圾自動分類器的流程和細節(jié)。
卷積神經(jīng)網(wǎng)絡(luò)的開山之作LeNet于1998年被提出,并成功應(yīng)用于手寫體識別。LeNet和現(xiàn)在的網(wǎng)絡(luò)結(jié)構(gòu)相比雖然簡單(如上圖所示),但是卷積層、池化層和全連接層這些基本模塊都已經(jīng)具備。
隨著ReLU和dropout的提出,以及GPU和大規(guī)模數(shù)據(jù)集的出現(xiàn),卷積神經(jīng)網(wǎng)絡(luò)在2012年迎來了歷史突破,AlexNet的出現(xiàn)讓卷積神經(jīng)網(wǎng)絡(luò)開始逐漸成為計算機視覺任務(wù)的標配。在AlexNet的基礎(chǔ)上,以增加網(wǎng)絡(luò)深度為思路,出現(xiàn)了VGGNet;以增強卷積模塊為思路,出現(xiàn)了基于Inception的一系列網(wǎng)絡(luò)。
隨著后來居上的ResNet的提出,層數(shù)極深的網(wǎng)絡(luò)成為了可能。通過引入殘差模塊,緩解了深度網(wǎng)絡(luò)訓(xùn)練過程中的梯度消失問題,讓網(wǎng)絡(luò)的深度不斷加大,網(wǎng)絡(luò)性能也得到了大幅提升。之后的DenseNet更是通過對特征圖的稠密連接,加強了特征的傳遞,繼續(xù)提升分類效果。當前ResNet及其變種形式已經(jīng)被廣泛地應(yīng)用于圖像分類任務(wù),同時也成為了在解決目標檢測和圖像分割等其他計算機視覺問題時常用的主干網(wǎng)絡(luò)結(jié)構(gòu)。
在本文中,我們使用50層的ResNet來構(gòu)建垃圾自動分類器。具體我們采用在ImageNet數(shù)據(jù)集上預(yù)訓(xùn)練的ResNet50模型參數(shù)作為初始化,利用上一節(jié)中收集的“垃圾”圖像數(shù)據(jù)集對其進行微調(diào)。
其中我們將上述ResNet50的最后一層輸出從1000(ImageNet數(shù)據(jù)集的分類數(shù)量)修改為4(垃圾分類數(shù)量),同時在訓(xùn)練過程中凍結(jié)了部分卷積層參數(shù)的更新。此外還進一步利用水平翻轉(zhuǎn)、隨機裁剪和色彩抖動等方式對訓(xùn)練的“垃圾”圖像進行數(shù)據(jù)增強。在完成垃圾自動分類器的訓(xùn)練后,我們對一些垃圾進行了自動分類的測試,準確率達到近90%。雖然對復(fù)雜的情況還是存在一定的誤判,但大部分常見的垃圾都得到了正確的區(qū)分,具有較強的實用性。
從單個垃圾分類到一群垃圾分類
上一節(jié)中我們介紹了垃圾自動分類器的構(gòu)建,但是這樣的垃圾分類器的輸入都是單個垃圾圖像。在實際的垃圾分類投放過程中,對單個的垃圾進行一一拍照分類顯得過于繁瑣和緩慢。那能不能對一群垃圾直接拍照后進行批量分類呢?要實現(xiàn)對一群垃圾的批量分類,其實就是要構(gòu)建一個垃圾的目標檢測器。輸入一張含有多個垃圾的圖像,讓模型輸出圖像上每種垃圾對應(yīng)的類別。
在深度學(xué)習(xí)出現(xiàn)之前,可變形部件模型(DPM)一直是流行的目標檢測方法。深度學(xué)習(xí)出現(xiàn)后,以R-CNN、Fast R-CNN、Faster R-CNN為代表的兩階段算法和以YOLOv1-3、SSD、RetinaNet為代表的單階段算法成為主流。前者是先由算法生成一系列待檢測目標的候選框,再通過卷積神經(jīng)網(wǎng)絡(luò)進行候選框的分類;后者則不用產(chǎn)生候選框,直接將目標邊框定位的問題轉(zhuǎn)化為回歸問題處理。
和垃圾分類器一樣,一個理想的垃圾檢測器,需要大量的“垃圾”標注數(shù)據(jù)來支撐。但是與分類數(shù)據(jù)集相比,檢測數(shù)據(jù)集除了標注類別外還要標注圖位置坐標,這樣的標注工作更為艱巨。在完成垃圾檢測的圖像數(shù)據(jù)集后,就可以利用當前主流的深度學(xué)習(xí)檢測算法來實現(xiàn)批量垃圾的分類。
寫在最后
垃圾分類最近成為了大家生活中經(jīng)常討論的話題,這篇文章分享了如何利用深度學(xué)習(xí)技術(shù)來構(gòu)建一個垃圾自動分類器,也進一步介紹了從單個垃圾分類到批量垃圾分類的思路和挑戰(zhàn)。
在實際的垃圾分類中,由于垃圾多種多樣,同一類別的垃圾可能差異很大,而不同類別的垃圾可能差異很小,在復(fù)雜情況下分類器效果可能會不盡如人意,后續(xù)可以考慮加入垃圾之間的高層次語義關(guān)系信息,進一步提升分類器的性能。最后希望大家都能做到正確的垃圾分類投放,畢竟生活不易,還是不要被罰款。
一些資料
[1] Deep Residual Learning for Image Recognition
[2] ImageNet Classification with Deep Convolutional Neural Networks
[3] Very Deep Convolutional Networks for Large-Scale Image Recognition
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03