
在之前的文章中我們給大家介紹了很多關(guān)于機器學(xué)習(xí)的算法知識,通過這些知識我們不難發(fā)現(xiàn)每個算法都是有很多功能的,這些功能能夠更好地幫助大家理解機器學(xué)習(xí)的相關(guān)知識,在這篇文章中我們給大家介紹一下關(guān)于SVM和線性回歸的優(yōu)缺點。
首先我們給大家介紹一下SVM支持向量機。其實支持向量機是一個十分經(jīng)典的算法,高準(zhǔn)確率,為避免過擬合提供了很好的理論保證,而且就算數(shù)據(jù)在原特征空間線性不可分,只要給個合適的核函數(shù),它就能運行得很好。在超高維的文本分類問題中特別受歡迎??上?nèi)存消耗大,難以解釋,運行和調(diào)參也有些煩人,而隨機森林卻剛好避開了這些缺點,比較實用。
那么支持向量機的優(yōu)點是什么呢?其是支持向量機的優(yōu)點就是可以解決高維問題,即大型特征空間、解決小樣本下機器學(xué)習(xí)問題、能夠處理非線性特征的相互作用、無局部極小值問、無需依賴整個數(shù)據(jù)、泛化能力比較強。當(dāng)然缺點也有很多,具體就是當(dāng)觀測樣本很多時,效率并不是很高、對非線性問題沒有通用解決方案,有時候很難找到一個合適的核函數(shù)、對于核函數(shù)的高維映射解釋力不強,尤其是徑向基函數(shù)、常規(guī)SVM只支持二分類、對缺失數(shù)據(jù)敏感。
在支持向量機中用一個核的選擇,那么對于核的選擇技巧是什么呢?第一,如果樣本數(shù)量小于特征數(shù),那么就沒必要選擇非線性核,簡單的使用線性核就可以了。第二,如果樣本數(shù)量大于特征數(shù)目,這時可以使用非線性核,將樣本映射到更高維度,一般可以得到更好的結(jié)果。第三,如果樣本數(shù)目和特征數(shù)目相等,該情況可以使用非線性核,原理和第二種一樣。
而SVM應(yīng)用領(lǐng)域是具體就是文本分類、圖像識別。
下面我們給大家介紹一下線性回歸的相關(guān)知識,其實線性回歸是用于回歸的,它不像Logistic回歸那樣用于分類,其基本思想是用梯度下降法對最小二乘法形式的誤差函數(shù)進(jìn)行優(yōu)化,當(dāng)然也可以用normal equation直接求得參數(shù)的解。那么線性回歸的優(yōu)點是什么呢?實現(xiàn)簡單,計算簡單就是線性回歸的優(yōu)點,而不能擬合非線性數(shù)據(jù)就是線性回歸的缺點。
在這篇文章中我們給大家介紹了關(guān)于線性回歸和而支持向量機的相關(guān)知識,相信大家看了這篇文章以后已經(jīng)知道了其中的優(yōu)缺點,希望能夠?qū)Υ蠹?a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學(xué)習(xí)有所幫助,也祝愿大家學(xué)有所成。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10CDA 數(shù)據(jù)分析師:商業(yè)數(shù)據(jù)分析實踐的落地者與價值創(chuàng)造者 商業(yè)數(shù)據(jù)分析的價值,最終要在 “實踐” 中體現(xiàn) —— 脫離業(yè)務(wù)場景的分 ...
2025-09-10機器學(xué)習(xí)解決實際問題的核心關(guān)鍵:從業(yè)務(wù)到落地的全流程解析 在人工智能技術(shù)落地的浪潮中,機器學(xué)習(xí)作為核心工具,已廣泛應(yīng)用于 ...
2025-09-09SPSS 編碼狀態(tài)區(qū)域中 Unicode 的功能與價值解析 在 SPSS(Statistical Product and Service Solutions,統(tǒng)計產(chǎn)品與服務(wù)解決方案 ...
2025-09-09