
數(shù)據(jù)清洗工作中面對的對象有三個(gè)——異常值,缺失值和重復(fù)值。而每個(gè)骯臟數(shù)據(jù)都是有各自的清洗方法,尤其是異常值的方法是最多的。由此可見,數(shù)據(jù)中的異常值是有很多的,在上一篇文章中我們給大家介紹了關(guān)于清洗異常值的一些方法,在這篇文章中我們會繼續(xù)為大家介紹異常值的清洗。
第一我們給大家介紹的是基于模型檢測,具體操作就是先建立一個(gè)數(shù)據(jù)模型,異常是那些同模型不能完美擬合的對象;如果模型是簇的集合,則異常是不顯著屬于任何簇的對象;在使用回歸模型時(shí),異常是相對遠(yuǎn)離預(yù)測值的對象。而這個(gè)方法的優(yōu)點(diǎn)就是有堅(jiān)實(shí)的統(tǒng)計(jì)學(xué)理論基礎(chǔ),當(dāng)存在充分的數(shù)據(jù)和所用的檢驗(yàn)類型的知識時(shí),這些檢驗(yàn)可能非常有效,當(dāng)然,缺點(diǎn)就是對于多元數(shù)據(jù),可用的選擇少一些,并且對于高維數(shù)據(jù),這些檢測可能性很差。
第二就是基于距離檢測,通常可以在對象之間定義鄰近性度量,異常對象是那些遠(yuǎn)離其他對象的對象。這種方法的優(yōu)點(diǎn)就是簡單。缺點(diǎn)就是基于鄰近度的方法需要O(m2)時(shí)間,大數(shù)據(jù)集不適用。當(dāng)然該方法對參數(shù)的選擇也是敏感的。同時(shí)不能處理具有不同密度區(qū)域的數(shù)據(jù)集,因?yàn)樗褂萌珠撝担荒芸紤]這種密度的變化。
第三就就是基于密度,當(dāng)一個(gè)點(diǎn)的局部密度顯著低于它的大部分近鄰時(shí)才將其分類為離群點(diǎn)。適合非均勻分布的數(shù)據(jù)。這種方法的優(yōu)點(diǎn)就是給出了對象是離群點(diǎn)的定量度量,并且即使數(shù)據(jù)具有不同的區(qū)域也能夠很好的處理,同時(shí)與基于距離的方法一樣,這些方法必然具有O(m2)的時(shí)間復(fù)雜度。對于低維數(shù)據(jù)使用特定的數(shù)據(jù)結(jié)構(gòu)可以達(dá)到O(mlogm)。而缺點(diǎn)就是參數(shù)選擇困難。雖然算法通過觀察不同的k值,取得最大離群點(diǎn)得分來處理該問題,但是,仍然需要選擇這些值的上下界。
最后就是基于聚類,一個(gè)對象是基于聚類的離群點(diǎn),如果該對象不強(qiáng)屬于任何簇。離群點(diǎn)對初始聚類的影響如果通過聚類檢測離群點(diǎn),則由于離群點(diǎn)影響聚類,存在一個(gè)問題:結(jié)構(gòu)是否有效。優(yōu)點(diǎn)就是基于線性和接近線性復(fù)雜度(k均值)的聚類技術(shù)來發(fā)現(xiàn)離群點(diǎn)可能是高度有效的,而簇的定義通常是離群點(diǎn)的補(bǔ),因此可能同時(shí)發(fā)現(xiàn)簇和離群點(diǎn)。缺點(diǎn)就是產(chǎn)生的離群點(diǎn)集和它們的得分可能非常依賴所用的簇的個(gè)數(shù)和數(shù)據(jù)中離群點(diǎn)的存在性。同時(shí)聚類算法產(chǎn)生的簇的質(zhì)量對該算法產(chǎn)生的離群點(diǎn)的質(zhì)量影響非常大。
在這篇文章中我們給大家介紹了關(guān)于數(shù)據(jù)清洗的剩余一部分知識,通過對這些知識的了解可以幫助我們更好地理解數(shù)據(jù)分析工作。希望大家通過對這些數(shù)據(jù)分析清洗方法的學(xué)習(xí),可以在工作時(shí)更加得心應(yīng)手,也算是提升個(gè)人的職場競爭力。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10