
由于人工智能的火熱,現(xiàn)在很多人都開始關(guān)注人工智能的各個(gè)分支的學(xué)習(xí)。人工智能由很多知識(shí)組成,其中人工智能的核心——機(jī)器學(xué)習(xí)是大家格外關(guān)注的。所以說,要想學(xué)好人工智能就必須學(xué)好機(jī)器學(xué)習(xí)。其中機(jī)器學(xué)習(xí)中涉及到了很多的算法,在這幾篇文章中我們就給大家介紹一下關(guān)于機(jī)器學(xué)習(xí)算法的優(yōu)缺點(diǎn)。
首先我們給大家介紹一下正則化算法,這是回歸方法的拓展,這種方法會(huì)基于模型復(fù)雜性對(duì)其進(jìn)行懲罰,它喜歡相對(duì)簡(jiǎn)單能夠更好的泛化的模型。其中,正則化算法的例子有很多,比如說嶺回歸、最小絕對(duì)收縮與選擇算子、GLASSO、彈性網(wǎng)絡(luò)、最小角回歸。而正則化算法的優(yōu)點(diǎn)有兩點(diǎn),第一就是其懲罰會(huì)減少過擬合。第二就是總會(huì)有解決方法。而正則化算法的缺點(diǎn)也有兩點(diǎn),第一就是懲罰會(huì)造成欠擬合。第二就是很難校準(zhǔn)。
接著我們給大家說一下集成算法,集成方法是由多個(gè)較弱的模型集成模型組,其中的模型可以單獨(dú)進(jìn)行訓(xùn)練,并且它們的預(yù)測(cè)能以某種方式結(jié)合起來去做出一個(gè)總體預(yù)測(cè)。該算法主要的問題是要找出哪些較弱的模型可以結(jié)合起來,以及結(jié)合的方法。這是一個(gè)非常強(qiáng)大的技術(shù)集,因此廣受歡迎。這種算法的案例有很多,比如說Boosting、Bootstrapped Aggregation(Bagging)、AdaBoost、層疊泛化、梯度推進(jìn)機(jī)、梯度提升回歸樹、隨機(jī)森林。而集成算法的優(yōu)點(diǎn)就是當(dāng)前最先進(jìn)的預(yù)測(cè)幾乎都使用了算法集成,它比使用單個(gè)模型預(yù)測(cè)出來的結(jié)果要精確的多。而缺點(diǎn)就是需要大量的維護(hù)工作。
然后我們給大家介紹一下決策樹算法,決策樹學(xué)習(xí)使用一個(gè)決策樹作為一個(gè)預(yù)測(cè)模型,它將對(duì)一個(gè) item(表征在分支上)觀察所得映射成關(guān)于該 item 的目標(biāo)值的結(jié)論(表征在葉子中)。而樹模型中的目標(biāo)是可變的,可以采一組有限值,被稱為分類樹;在這些樹結(jié)構(gòu)中,葉子表示類標(biāo)簽,分支表示表征這些類標(biāo)簽的連接的特征。決策樹算法的案例有很多,比如說分類和回歸樹、Iterative Dichotomiser 3(ID3)、C4.5 和 C5.0。決策樹算法的優(yōu)點(diǎn)有兩種,第一就是容易解釋,第二就是非參數(shù)型。缺點(diǎn)就是趨向過擬合,而且可能或陷于局部最小值中,最后就是沒有在線學(xué)習(xí)。
在這篇文章中我們給大家介紹了機(jī)器學(xué)習(xí)中涉及到的正則化算法、集成算法以及決策樹算法的案例、優(yōu)點(diǎn)以及缺點(diǎn),這些知識(shí)都是能夠幫助大家理解機(jī)器學(xué)習(xí)的算法,希望這篇文章能夠幫助到大家。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10