
我們?cè)谏弦黄恼轮薪o大家說了大數(shù)據(jù)中的數(shù)據(jù)分析預(yù)測(cè)秘訣中的一個(gè)秘訣,就是能夠訪問質(zhì)量高的數(shù)據(jù)以及容易理解的數(shù)據(jù),只有這樣,我們才能夠做好數(shù)據(jù)預(yù)測(cè)工作,這樣才能夠得到一個(gè)比較準(zhǔn)確的結(jié)果了。在這篇文章中我們給大家介紹更多有用的內(nèi)容,我們?cè)谶@篇文章中具體給大家講三個(gè)秘訣,分別是找到合適的模式、專注于可管理的任務(wù)、使用正確的方法完成工作。希望這篇文章能夠給大家?guī)韼椭?
首先就是找到合適的模式,這是因?yàn)榫湍壳岸?,每個(gè)人都癡迷于算法,但是算法必須和輸入到算法中的數(shù)據(jù)一樣好。如果找不到適合的模式,那么他們的算法就毫無用處。一般來說,大多數(shù)數(shù)據(jù)集都有其隱藏的模式。而通常來說,模式通常以兩種方式隱藏。第一種就是模式位于兩列之間的關(guān)系中。第二種模式顯示了變量隨時(shí)間變化的關(guān)系。
然后就是專注于可管理的任務(wù),這些任務(wù)可能會(huì)帶來積極的投資回報(bào)。如今,人們很想把機(jī)器學(xué)習(xí)算法應(yīng)用到海量數(shù)據(jù)上,以期獲得更深刻的見解。這種方法的問題在于,這會(huì)導(dǎo)致問題太大,數(shù)據(jù)太亂——沒有足夠的資金和足夠的支持。這樣是不可能獲得成功的。而當(dāng)任務(wù)相對(duì)集中時(shí),成功的可能性就會(huì)大得多。如果有問題的話,我們很可能會(huì)接觸到那些能夠理解復(fù)雜關(guān)系的專家。
其次就是使用正確的方法來完成工作。好消息是,幾乎有無數(shù)的方法可以用來生成精確的預(yù)測(cè)分析。然而,這也是個(gè)壞消息。這是因?yàn)槊刻於加行碌摹衢T的分析方法出現(xiàn),使用新方法很容易讓人興奮,然而,根據(jù)經(jīng)驗(yàn)來說,最成功的項(xiàng)目是那些真正深入思考分析結(jié)果并讓其指導(dǎo)他們選擇方法的項(xiàng)目。即使最合適的方法并不是最性感、最新的方法。所以這就要求用戶必須謹(jǐn)慎選擇適合他們需求的方法。必須擁有一種高效且可解釋的技術(shù),一種可以利用序列數(shù)據(jù)、時(shí)間數(shù)據(jù)的統(tǒng)計(jì)特性,然后將其外推到最有可能的未來。
我們?cè)谶@篇文章中給大家講了三個(gè)方法,分別是找到合適的模式、專注于可管理的任務(wù)、使用正確的方法完成工作。我們?cè)谙乱黄恼轮薪o大家介紹最后一部分內(nèi)容,最后感謝大家的閱讀。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
訓(xùn)練與驗(yàn)證損失驟升:機(jī)器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機(jī)器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對(duì)數(shù)據(jù)的需求已從 “存儲(chǔ)” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計(jì)基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計(jì)基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語(yǔ)言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11