
在上一篇文章中我們給大家介紹了很多的機器學(xué)習(xí)中的基礎(chǔ)知識,機器學(xué)習(xí)的基礎(chǔ)知識是比較零碎的,但卻是十分重要的,所以我們要重視這些內(nèi)容。在這篇文章中我們會繼續(xù)為大家介紹機器學(xué)習(xí)涉及到的基礎(chǔ)概念,希望大家能夠重視起來。
(1)候選采樣是一種優(yōu)化訓(xùn)練時間的方式,使用 Softmax 等算法計算所有正標(biāo)簽的概率,同時只計算一些隨機取樣的負標(biāo)簽的概率。這個想法的思路是,負類別可以通過頻率更低的負強化進行學(xué)習(xí),而正類別經(jīng)常能得到適當(dāng)?shù)恼龔娀?,實際觀察確實如此。候選取樣的動力是計算有效性從所有負類別的非計算預(yù)測的得益。
(2)標(biāo)定層是一種調(diào)整后期預(yù)測的結(jié)構(gòu),通常用于解釋預(yù)測偏差。調(diào)整后的預(yù)期和概率必須匹配一個觀察標(biāo)簽集的分布。
(3)分類模型是機器學(xué)習(xí)模型的一種,將數(shù)據(jù)分離為兩個或多個離散類別。分類模型與回歸模型成對比。
(4)類別是所有同類屬性的目標(biāo)值作為一個標(biāo)簽。
(5)類別不平衡數(shù)據(jù)集是一個二元分類問題,其中兩個類別的標(biāo)簽的分布頻率有很大的差異。
(6)收斂就是訓(xùn)練過程達到的某種狀態(tài),其中訓(xùn)練損失和驗證損失在經(jīng)過了確定的迭代次數(shù)后,在每一次迭代中,改變很小或完全不變。換句話說就是,當(dāng)對當(dāng)前數(shù)據(jù)繼續(xù)訓(xùn)練而無法再提升模型的表現(xiàn)水平的時候,就稱模型已經(jīng)收斂。在深度學(xué)習(xí)中,損失值下降之前,有時候經(jīng)過多次迭代仍保持常量或者接近常量,會造成模型已經(jīng)收斂的錯覺。
(7)混淆矩陣就是總結(jié)分類模型的預(yù)測結(jié)果的表現(xiàn)水平的 N×N 表格。混淆矩陣的一個軸列出模型預(yù)測的標(biāo)簽,另一個軸列出實際的標(biāo)簽。N 表示類別的數(shù)量。在一個二元分類模型中,N=2。多類別分類的混淆矩陣可以幫助發(fā)現(xiàn)錯誤出現(xiàn)的模式。混淆矩陣包含了足夠多的信息可以計算很多的模型表現(xiàn)度量,比如精度和召回率。
(8)連續(xù)特征擁有無限個取值點的浮點特征。和離散特征相反。
通過上面對機器學(xué)習(xí)概念的描述,相信大家對于機器學(xué)習(xí)的知識有了一定的了解了吧?大家在進行學(xué)習(xí)機器學(xué)習(xí)的時候一定要重視這些知識,這樣才能夠做好機器學(xué)習(xí)知識的儲備。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10CDA 數(shù)據(jù)分析師:商業(yè)數(shù)據(jù)分析實踐的落地者與價值創(chuàng)造者 商業(yè)數(shù)據(jù)分析的價值,最終要在 “實踐” 中體現(xiàn) —— 脫離業(yè)務(wù)場景的分 ...
2025-09-10機器學(xué)習(xí)解決實際問題的核心關(guān)鍵:從業(yè)務(wù)到落地的全流程解析 在人工智能技術(shù)落地的浪潮中,機器學(xué)習(xí)作為核心工具,已廣泛應(yīng)用于 ...
2025-09-09SPSS 編碼狀態(tài)區(qū)域中 Unicode 的功能與價值解析 在 SPSS(Statistical Product and Service Solutions,統(tǒng)計產(chǎn)品與服務(wù)解決方案 ...
2025-09-09