
雖然說人工智能現(xiàn)在發(fā)展迅速,但人工智能還是處于起步階段,距離我們想象的人工智能還差的很遠。就目前而言,人工智能的發(fā)展面臨著五大考驗,那么這五大考驗就叫那個都是什么呢?下面我們就給大家好好介紹一下這些內(nèi)容。
首先我們說一說人工智能面臨的第一個考驗,那就是理論知識遇到瓶頸,這是因為目前人工智能在學(xué)習上遵循的理論依然是上個世紀80年代提出的,人們并沒有從本質(zhì)上理解人類的學(xué)習原理,從監(jiān)督學(xué)習到無監(jiān)督學(xué)習的方法還在探索。目前的人工智能技術(shù)多數(shù)都要依靠形態(tài)匹配,在監(jiān)督式學(xué)習下,輸入訓(xùn)練數(shù)據(jù),每組訓(xùn)練數(shù)據(jù)有一個明確的標識或結(jié)果。人們將預(yù)測結(jié)果與訓(xùn)練數(shù)據(jù)的實際結(jié)果進行比較,不斷調(diào)整預(yù)測模型,直到模型的預(yù)測結(jié)果達到一個預(yù)期的準確率。而無監(jiān)督學(xué)習中,計算機無需人類幫助的情況下,像人類一樣自己學(xué)習知識。計算機并不被告知怎么做,而是采用一定的激勵制度來訓(xùn)練機器人培養(yǎng)出正確的分類。無監(jiān)督學(xué)習方式是機器人工智能發(fā)展的關(guān)鍵技能之一。
人工智能面臨的第二個考驗就是知識表達存在問題。這是因為許多輸入的數(shù)據(jù)其實都經(jīng)過了人腦抽象,但大家看不到,若要完成形式化知識結(jié)構(gòu)的搭建,是需要很多知識的,而機器中沒有人腦中的背景知識,所以數(shù)據(jù)中蘊含的信息是不完整的,繼而計算不出正確的結(jié)果。如果將這些信息補足,是有可能用機器處理的。但同時要看到的是這些信息很難補足,一方面是因為很多人腦中的知識難以形式化,另一方面,補什么補多少才能達到特定的效果,很難衡量。并且人腦輸出的信息帶寬太小,很難通過一個人來補足機器中沒有的知識,而多人協(xié)同又存在知識相互不兼容的問題。所以知識太多,知識難以形式化,人腦輸出太慢,成為了知識表達的三大障礙。如果突破了這些難題我們的人工智能才能夠更快的發(fā)展。
在這篇文章中我們給大家介紹了人工智能面臨的考驗的一部分內(nèi)容,具體所指就是人工智能存在理論知識遇到瓶頸、知識表達存在問題這兩個考驗。由于篇幅原因我們就給大家介紹到這里了,我們在下篇文章中繼續(xù)為大家介紹更多的知識。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10