99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀Python使用numpy實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)
Python使用numpy實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)
2018-07-27
收藏

Python使用numpy實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)

本文完全利用numpy實(shí)現(xiàn)一個(gè)簡單的BP神經(jīng)網(wǎng)絡(luò),由于是做regression而不是classification,因此在這里輸出層選取的激勵(lì)函數(shù)就是f(x)=x。BP神經(jīng)網(wǎng)絡(luò)的具體原理此處不再介紹。
 

   import numpy as np
     
    class NeuralNetwork(object):
        def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
            # Set number of nodes in input, hidden and output layers.設(shè)定輸入層、隱藏層和輸出層的node數(shù)目
            self.input_nodes = input_nodes
            self.hidden_nodes = hidden_nodes
            self.output_nodes = output_nodes
     
            # Initialize weights,初始化權(quán)重和學(xué)習(xí)速率
            self.weights_input_to_hidden = np.random.normal(0.0, self.hidden_nodes**-0.5,
                                           ( self.hidden_nodes, self.input_nodes))
     
            self.weights_hidden_to_output = np.random.normal(0.0, self.output_nodes**-0.5,
                                           (self.output_nodes, self.hidden_nodes))
            self.lr = learning_rate
            
            # 隱藏層的激勵(lì)函數(shù)為sigmoid函數(shù),Activation function is the sigmoid function
            self.activation_function = (lambda x: 1/(1 + np.exp(-x)))
        
        def train(self, inputs_list, targets_list):
            # Convert inputs list to 2d array
            inputs = np.array(inputs_list, ndmin=2).T   # 輸入向量的shape為 [feature_diemension, 1]
            targets = np.array(targets_list, ndmin=2).T  
     
            # 向前傳播,F(xiàn)orward pass
            # TODO: Hidden layer
            hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) # signals into hidden layer
            hidden_outputs =  self.activation_function(hidden_inputs)  # signals from hidden layer
     
            
            # 輸出層,輸出層的激勵(lì)函數(shù)就是 y = x
            final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) # signals into final output layer
            final_outputs = final_inputs # signals from final output layer
            
            ### 反向傳播 Backward pass,使用梯度下降對(duì)權(quán)重進(jìn)行更新 ###
            
            # 輸出誤差
            # Output layer error is the difference between desired target and actual output.
            output_errors = (targets_list-final_outputs)
     
            # 反向傳播誤差 Backpropagated error
            # errors propagated to the hidden layer
            hidden_errors = np.dot(output_errors, self.weights_hidden_to_output)*(hidden_outputs*(1-hidden_outputs)).T
     
            # 更新權(quán)重 Update the weights
            # 更新隱藏層與輸出層之間的權(quán)重 update hidden-to-output weights with gradient descent step
            self.weights_hidden_to_output += output_errors * hidden_outputs.T * self.lr
            # 更新輸入層與隱藏層之間的權(quán)重 update input-to-hidden weights with gradient descent step
            self.weights_input_to_hidden += (inputs * hidden_errors * self.lr).T
     
        # 進(jìn)行預(yù)測(cè)    
        def run(self, inputs_list):
            # Run a forward pass through the network
            inputs = np.array(inputs_list, ndmin=2).T
            
            #### 實(shí)現(xiàn)向前傳播 Implement the forward pass here ####
            # 隱藏層 Hidden layer
            hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) # signals into hidden layer
            hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer
            
            # 輸出層 Output layer
            final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) # signals into final output layer
            final_outputs = final_inputs # signals from final output layer
            
            return final_outputs

數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼

若不方便掃碼,搜微信號(hào):CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機(jī)數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進(jìn)行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個(gè)參數(shù)驗(yàn)證碼對(duì)象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個(gè)配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺(tái)檢測(cè)極驗(yàn)服務(wù)器是否宕機(jī) new_captcha: data.new_captcha, // 用于宕機(jī)時(shí)表示是新驗(yàn)證碼的宕機(jī) product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請(qǐng)參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計(jì)時(shí)完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請(qǐng)輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請(qǐng)輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }