
在Python中實現(xiàn)貪婪排名算法的教程
這篇文章主要介紹了在Python中實現(xiàn)貪婪排名算法的教程,也是對學(xué)習(xí)算法的一個很好的演示,需要的朋友可以參考下
在較早的一遍文章中,我曾經(jīng)提到過我已經(jīng)寫了一個屬于自己的排序算法,并且認為需要通過一些代碼來重新回顧一下這個排序算法。
對于我所完成的工作,我核實并且保證微處理器的安全。對非常復(fù)雜的CPU進行測試的一個方法就是創(chuàng)建該芯片的另一個模型,其可以用來產(chǎn)生在CPU上運行的偽隨機指令流。這所謂的ISG(指令流產(chǎn)生器)能夠在很短的時間內(nèi)創(chuàng)建幾千(甚至幾百萬)個這樣的測試,通過某種方式,使其可以巧妙地給出一些對將在CPU上執(zhí)行的指令流的控制或操縱。
現(xiàn)在對這些指令流進行模擬,可以通過每一個測試實例花費的時間獲取到CPU的那一部分被使用了(這叫做被覆蓋)的信息,并且ISG所產(chǎn)生的的過個測試可能會覆蓋CPU的同一個區(qū)域。為了增加CPU的整體覆蓋范圍,我們啟動一個被稱作復(fù)原的行為——所有的測試都運行,并且它們的覆蓋范圍和花費的時間將被存儲起來。在這次復(fù)原的最后,您可能會有幾千個測試實例只覆蓋了CPU的某一部分。
如果你拿著這個復(fù)原測試的記過,并且對其進行排序,你會發(fā)現(xiàn)這個測試結(jié)果的一個子集會給出它們覆蓋了CPU的所有部分。通常,上千的偽隨機測試可能會被排序,進而產(chǎn)生一個只有幾百個測試的子列表,它們在運行時將會給出同樣的覆蓋范圍。接下來我們經(jīng)常會做的是,查看CPU的哪個部分沒有被覆蓋,然后通過ISG或其它方法在產(chǎn)生更多的測試,來試圖填補這一空白。再然后會運行一次新的復(fù)原,并且循環(huán)得再一次進行排序來充分使用該CPU,以達到某個覆蓋范圍目標。
對測試進行排名是復(fù)原流程的一個重要部分,當其進行地很好時你可能就會忘記它。不幸的是,有時,當我想要對其它數(shù)據(jù)進行排名時,CAD工具廠商所提供的常用排名算法并不適合。因此,能夠擴展到處理成百上千個測試和覆蓋點才是一個排名算法的本質(zhì)。
輸入
通常情況下,我不得不從其他CAD程序產(chǎn)生的文本或HTML文件來解析我的輸入 - 這是個是單調(diào)乏味的工作,我會跳過這個乏味的工作,而通過以Python字典的形式提供理想的輸入。 (有時用于解析輸入文件的代碼可以跟排名算法一樣大或著更大)。
讓我們假設(shè)每個ISG測試都有一個名稱,在確定的“時間”內(nèi)運行,當模擬顯示'覆蓋'設(shè)計中的 一組編號的特性時。解析之后,所收集的輸入數(shù)據(jù)由程序中的結(jié)果字典來表示。
results = {
# 'TEST': ( TIME, set([COVERED_POINT ...])),
'test_00': ( 2.08, set([2, 3, 5, 11, 12, 16, 19, 23, 25, 26, 29, 36, 38, 40])),
'test_01': ( 58.04, set([0, 10, 13, 15, 17, 19, 20, 22, 27, 30, 31, 33, 34])),
'test_02': ( 34.82, set([3, 4, 6, 12, 15, 21, 23, 25, 26, 33, 34, 40])),
'test_03': ( 32.74, set([4, 5, 10, 16, 21, 22, 26, 39])),
'test_04': (100.00, set([0, 1, 4, 6, 7, 8, 9, 11, 12, 18, 26, 27, 31, 36])),
'test_05': ( 4.46, set([1, 2, 6, 11, 14, 16, 17, 21, 22, 23, 30, 31])),
'test_06': ( 69.57, set([10, 11, 15, 17, 19, 22, 26, 27, 30, 32, 38])),
'test_07': ( 85.71, set([0, 2, 4, 5, 9, 10, 14, 17, 24, 34, 36, 39])),
'test_08': ( 5.73, set([0, 3, 8, 9, 13, 19, 23, 25, 28, 36, 38])),
'test_09': ( 15.55, set([7, 15, 17, 25, 26, 30, 31, 33, 36, 38, 39])),
'test_10': ( 12.05, set([0, 4, 13, 14, 15, 24, 31, 35, 39])),
'test_11': ( 52.23, set([0, 3, 6, 10, 11, 13, 23, 34, 40])),
'test_12': ( 26.79, set([0, 1, 4, 5, 7, 8, 10, 12, 13, 31, 32, 40])),
'test_13': ( 16.07, set([2, 6, 9, 11, 13, 15, 17, 18, 34])),
'test_14': ( 40.62, set([1, 2, 8, 15, 16, 19, 22, 26, 29, 31, 33, 34, 38])),
}<span style="font-size:10pt;line-height:1.5;font-family:'sans serif', tahoma, verdana, helvetica;"></span>
貪婪排名算法的核心是對當前選擇測試的子集進行排序:
至少用一個測試集覆蓋盡可能大的范圍。
經(jīng)過第一個步驟,逐步減少測試集,同時覆蓋盡可能大的范圍。
給選擇的測試做出一個排序,這樣小數(shù)據(jù)集的測試也可以選擇使用
完成上述排序后,接下來就可以優(yōu)化算法的執(zhí)行時間了
當然,他需要能在很大的測試集下工作。
貪婪排名算法的工作原理就是先選擇當前測試集的某一項的最優(yōu)解,然后尋找下一項的最優(yōu)解,依次進行...
如果有兩個以上的算法得出相同的執(zhí)行結(jié)果,那么將以執(zhí)行”時間“來比較兩種算法優(yōu)劣。
用下面的函數(shù)完成的算法:
def greedyranker(results):
results = results.copy()
ranked, coveredsofar, costsofar, round = [], set(), 0, 0
noncontributing = []
while results:
round += 1
# What each test can contribute to the pool of what is covered so far
contributions = [(len(cover - coveredsofar), -cost, test)
for test, (cost, cover) in sorted(results.items()) ]
# Greedy ranking by taking the next greatest contributor
delta_cover, benefit, test = max( contributions )
if delta_cover > 0:
ranked.append((test, delta_cover))
cost, cover = results.pop(test)
coveredsofar.update(cover)
costsofar += cost
for delta_cover, benefit, test in contributions:
if delta_cover == 0:
# this test cannot contribute anything
noncontributing.append( (test, round) )
results.pop(test)
return coveredsofar, ranked, costsofar, noncontributing
每次while循環(huán)(第5行),下一個最好的測試會被追加到排名和測試,不會 丟棄貢獻的任何額外覆蓋(37-41行)
上面的函數(shù)是略顯簡單,所以我花了一點時間用tutor來標注,當運行時打印出它做的。
函數(shù)(有指導(dǎo)):
它完成同樣的事情,但代碼量更大,太繁冗:
def greedyranker(results, tutor=True):
results = results.copy()
ranked, coveredsofar, costsofar, round = [], set(), 0, 0
noncontributing = []
while results:
round += 1
# What each test can contribute to the pool of what is covered so far
contributions = [(len(cover - coveredsofar), -cost, test)
for test, (cost, cover) in sorted(results.items()) ]
if tutor:
print('\n## Round %i' % round)
print(' Covered so far: %2i points: ' % len(coveredsofar))
print(' Ranked so far: ' + repr([t for t, d in ranked]))
print(' What the remaining tests can contribute, largest contributors first:')
print(' # DELTA, BENEFIT, TEST')
deltas = sorted(contributions, reverse=True)
for delta_cover, benefit, test in deltas:
print(' %2i, %7.2f, %s' % (delta_cover, benefit, test))
if len(deltas)>=2 and deltas[0][0] == deltas[1][0]:
print(' Note: This time around, more than one test gives the same')
print(' maximum delta contribution of %i to the coverage so far'
% deltas[0][0])
if deltas[0][1] != deltas[1][1]:
print(' we order based on the next field of minimum cost')
print(' (equivalent to maximum negative cost).')
else:
print(' the next field of minimum cost is the same so')
print(' we arbitrarily order by test name.')
zeroes = [test for delta_cover, benefit, test in deltas
if delta_cover == 0]
if zeroes:
print(' The following test(s) cannot contribute more to coverage')
print(' and will be dropped:')
print(' ' + ', '.join(zeroes))
# Greedy ranking by taking the next greatest contributor
delta_cover, benefit, test = max( contributions )
if delta_cover > 0:
ranked.append((test, delta_cover))
cost, cover = results.pop(test)
if tutor:
print(' Ranking %s in round %2i giving extra coverage of: %r'
% (test, round, sorted(cover - coveredsofar)))
coveredsofar.update(cover)
costsofar += cost
for delta_cover, benefit, test in contributions:
if delta_cover == 0:
# this test cannot contribute anything
noncontributing.append( (test, round) )
results.pop(test)
if tutor:
print('\n## ALL TESTS NOW RANKED OR DISCARDED\n')
return coveredsofar, ranked, costsofar, noncontributing
每一塊以 if tutor開始: 添加以上代碼
樣值輸出
調(diào)用排序并打印結(jié)果的代碼是:
totalcoverage, ranking, totalcost, nonranked = greedyranker(results)
print('''
A total of %i points were covered,
using only %i of the initial %i tests,
and should take %g time units to run.
The tests in order of coverage added:
TEST DELTA-COVERAGE'''
% (len(totalcoverage), len(ranking), len(results), totalcost))
print('\n'.join(' %6s %i' % r for r in ranking))
結(jié)果包含大量東西,來自tutor并且最后跟著結(jié)果。
對這個偽隨機生成15條測試數(shù)據(jù)的測試案例,看起來只需要七條去產(chǎn)生最大的總覆蓋率。(而且如果你愿意放棄三條測試,其中每個只覆蓋了一個額外的點,那么15條測試中的4條就將給出92.5%的最大可能覆蓋率)。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03