99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀機器學習中常見的幾種最優(yōu)化方法
機器學習中常見的幾種最優(yōu)化方法
2018-03-25
收藏

機器學習中常見的幾種最優(yōu)化方法

我們每個人都會在我們的生活或者工作中遇到各種各樣的最優(yōu)化問題,比如每個企業(yè)和個人都要考慮的一個問題“在一定成本下,如何使利潤最大化”等。最優(yōu)化方法是一種數(shù)學方法,它是研究在給定約束之下如何尋求某些因素(的量),以使某一(或某些)指標達到最優(yōu)的一些學科的總稱。隨著學習的深入,博主越來越發(fā)現(xiàn)最優(yōu)化方法的重要性,學習和工作中遇到的大多問題都可以建模成一種最優(yōu)化模型進行求解,比如我們現(xiàn)在學習的機器學習算法,大部分的機器學習算法的本質(zhì)都是建立優(yōu)化模型,通過最優(yōu)化方法對目標函數(shù)(或損失函數(shù))進行優(yōu)化,從而訓練出最好的模型。常見的最優(yōu)化方法有梯度下降法、牛頓法和擬牛頓法、共軛梯度法等等。

1. 梯度下降法(Gradient Descent)

梯度下降法是最早最簡單,也是最為常用的最優(yōu)化方法。梯度下降法實現(xiàn)簡單,當目標函數(shù)是凸函數(shù)時,梯度下降法的解是全局解。一般情況下,其解不保證是全局最優(yōu)解,梯度下降法的速度也未必是最快的。梯度下降法的優(yōu)化思想是用當前位置負梯度方向作為搜索方向,因為該方向為當前位置的最快下降方向,所以也被稱為是”最速下降法“。最速下降法越接近目標值,步長越小,前進越慢。梯度下降法的搜索迭代示意圖如下圖所示:

牛頓法的缺點:

(1)靠近極小值時收斂速度減慢,如下圖所示;

(2)直線搜索時可能會產(chǎn)生一些問題;

(3)可能會“之字形”地下降。

從上圖可以看出,梯度下降法在接近最優(yōu)解的區(qū)域收斂速度明顯變慢,利用梯度下降法求解需要很多次的迭代。

機器學習中,基于基本的梯度下降法發(fā)展了兩種梯度下降方法,分別為隨機梯度下降法和批量梯度下降法。

比如對一個線性回歸(Linear Logistics)模型,假設下面的h(x)是要擬合的函數(shù),J(theta)為損失函數(shù),theta是參數(shù),要迭代求解的值,theta求解出來了那最終要擬合的函數(shù)h(theta)就出來了。其中m是訓練集的樣本個數(shù),n是特征的個數(shù)。

1)批量梯度下降法(Batch Gradient Descent,BGD)

(1)將J(theta)對theta求偏導,得到每個theta對應的的梯度:

(2)由于是要最小化風險函數(shù),所以按每個參數(shù)theta的梯度負方向,來更新每個theta:

(3)從上面公式可以注意到,它得到的是一個全局最優(yōu)解,但是每迭代一步,都要用到訓練集所有的數(shù)據(jù),如果m很大,那么可想而知這種方法的迭代速度會相當?shù)穆K?,這就引入了另外一種方法——隨機梯度下降。

對于批量梯度下降法,樣本個數(shù)m,x為n維向量,一次迭代需要把m個樣本全部帶入計算,迭代一次計算量為m*n2。

2)隨機梯度下降(Random Gradient Descent,RGD)

(1)上面的風險函數(shù)可以寫成如下這種形式,損失函數(shù)對應的是訓練集中每個樣本的粒度,而上面批量梯度下降對應的是所有的訓練樣本:

(2)每個樣本的損失函數(shù),對theta求偏導得到對應梯度,來更新theta:

(3)隨機梯度下降是通過每個樣本來迭代更新一次,如果樣本量很大的情況(例如幾十萬),那么可能只用其中幾萬條或者幾千條的樣本,就已經(jīng)將theta迭代到最優(yōu)解了,對比上面的批量梯度下降,迭代一次需要用到十幾萬訓練樣本,一次迭代不可能最優(yōu),如果迭代10次的話就需要遍歷訓練樣本10次。但是,SGD伴隨的一個問題是噪音較BGD要多,使得SGD并不是每次迭代都向著整體最優(yōu)化方向。

隨機梯度下降每次迭代只使用一個樣本,迭代一次計算量為n2,當樣本個數(shù)m很大的時候,隨機梯度下降迭代一次的速度要遠高于批量梯度下降方法。兩者的關系可以這樣理解:隨機梯度下降方法以損失很小的一部分精確度和增加一定數(shù)量的迭代次數(shù)為代價,換取了總體的優(yōu)化效率的提升。增加的迭代次數(shù)遠遠小于樣本的數(shù)量。

對批量梯度下降法和隨機梯度下降法的總結:

批量梯度下降---最小化所有訓練樣本的損失函數(shù),使得最終求解的是全局的最優(yōu)解,即求解的參數(shù)是使得風險函數(shù)最小,但是對于大規(guī)模樣本問題效率低下。

隨機梯度下降---最小化每條樣本的損失函數(shù),雖然不是每次迭代得到的損失函數(shù)都向著全局最優(yōu)方向, 但是大的整體的方向是向全局最優(yōu)解的,最終的結果往往是在全局最優(yōu)解附近,適用于大規(guī)模訓練樣本情況。

2. 牛頓法和擬牛頓法(Newton's method & Quasi-Newton Methods)

1)牛頓法(Newton's method)

牛頓法是一種在實數(shù)域和復數(shù)域上近似求解方程的方法。方法使用函數(shù)f (x)的泰勒級數(shù)的前面幾項來尋找方程f (x) = 0的根。牛頓法最大的特點就在于它的收斂速度很快。

具體步驟:

首先,選擇一個接近函數(shù) f (x)零點的 x0,計算相應的 f (x0) 和切線斜率f  ' (x0)(這里f ' 表示函數(shù) f  的導數(shù))。然后我們計算穿過點(x0,  f  (x0)) 并且斜率為f '(x0)的直線和 x 軸的交點的x坐標,也就是求如下方程的解:

我們將新求得的點的 x 坐標命名為x1,通常x1會比x0更接近方程f  (x) = 0的解。因此我們現(xiàn)在可以利用x1開始下一輪迭代。迭代公式可化簡為如下所示:

已經(jīng)證明,如果f  ' 是連續(xù)的,并且待求的零點x是孤立的,那么在零點x周圍存在一個區(qū)域,只要初始值x0位于這個鄰近區(qū)域內(nèi),那么牛頓法必定收斂。 并且,如果f  ' (x)不為0, 那么牛頓法將具有平方收斂的性能. 粗略的說,這意味著每迭代一次,牛頓法結果的有效數(shù)字將增加一倍。下圖為一個牛頓法執(zhí)行過程的例子。

由于牛頓法是基于當前位置的切線來確定下一次的位置,所以牛頓法又被很形象地稱為是"切線法"。牛頓法的搜索路徑(二維情況)如下圖所示:

牛頓法搜索動態(tài)示例圖:

關于牛頓法和梯度下降法的效率對比:

從本質(zhì)上去看,牛頓法是二階收斂,梯度下降是一階收斂,所以牛頓法就更快。如果更通俗地說的話,比如你想找一條最短的路徑走到一個盆地的最底部,梯度下降法每次只從你當前所處位置選一個坡度最大的方向走一步,牛頓法在選擇方向時,不僅會考慮坡度是否夠大,還會考慮你走了一步之后,坡度是否會變得更大。所以,可以說牛頓法比梯度下降法看得更遠一點,能更快地走到最底部。(牛頓法目光更加長遠,所以少走彎路;相對而言,梯度下降法只考慮了局部的最優(yōu),沒有全局思想。)

根據(jù)wiki上的解釋,從幾何上說,牛頓法就是用一個二次曲面去擬合你當前所處位置的局部曲面,而梯度下降法是用一個平面去擬合當前的局部曲面,通常情況下,二次曲面的擬合會比平面更好,所以牛頓法選擇的下降路徑會更符合真實的最優(yōu)下降路徑。

注:紅色的牛頓法的迭代路徑,綠色的是梯度下降法的迭代路徑。

牛頓法的優(yōu)缺點總結:

優(yōu)點:二階收斂,收斂速度快;

缺點:牛頓法是一種迭代算法,每一步都需要求解目標函數(shù)的Hessian矩陣的逆矩陣,計算比較復雜。

2)擬牛頓法(Quasi-Newton Methods)

擬牛頓法是求解非線性優(yōu)化問題最有效的方法之一,于20世紀50年代由美國Argonne國家實驗室的物理學家W.C.Davidon所提出來。Davidon設計的這種算法在當時看來是非線性優(yōu)化領域最具創(chuàng)造性的發(fā)明之一。不久R. Fletcher和M. J. D. Powell證實了這種新的算法遠比其他方法快速和可靠,使得非線性優(yōu)化這門學科在一夜之間突飛猛進。

擬牛頓法的本質(zhì)思想是改善牛頓法每次需要求解復雜的Hessian矩陣的逆矩陣的缺陷,它使用正定矩陣來近似Hessian矩陣的逆,從而簡化了運算的復雜度。擬牛頓法和最速下降法一樣只要求每一步迭代時知道目標函數(shù)的梯度。通過測量梯度的變化,構造一個目標函數(shù)的模型使之足以產(chǎn)生超線性收斂性。這類方法大大優(yōu)于最速下降法,尤其對于困難的問題。另外,因為擬牛頓法不需要二階導數(shù)的信息,所以有時比牛頓法更為有效。如今,優(yōu)化軟件中包含了大量的擬牛頓算法用來解決無約束,約束,和大規(guī)模的優(yōu)化問題。

具體步驟:

擬牛頓法的基本思想如下。首先構造目標函數(shù)在當前迭代xk的二次模型:

  這里Bk是一個對稱正定矩陣,于是我們?nèi)∵@個二次模型的最優(yōu)解作為搜索方向,并且得到新的迭代點:
  其中我們要求步長ak 
滿足Wolfe條件。這樣的迭代與牛頓法類似,區(qū)別就在于用近似的Hesse矩陣Bk 
代替真實的Hesse矩陣。所以擬牛頓法最關鍵的地方就是每一步迭代中矩陣Bk
的更新。現(xiàn)在假設得到一個新的迭代xk+1,并得到一個新的二次模型:
我們盡可能地利用上一步的信息來選取Bk。具體地,我們要求
 
  從而得到

這個公式被稱為割線方程。常用的擬牛頓法有DFP算法和BFGS算法。

3. 共軛梯度法(Conjugate Gradient)

共軛梯度法是介于最速下降法與牛頓法之間的一個方法,它僅需利用一階導數(shù)信息,但克服了最速下降法收斂慢的缺點,又避免了牛頓法需要存儲和計算Hesse矩陣并求逆的缺點,共軛梯度法不僅是解決大型線性方程組最有用的方法之一,也是解大型非線性最優(yōu)化最有效的算法之一。 在各種優(yōu)化算法中,共軛梯度法是非常重要的一種。其優(yōu)點是所需存儲量小,具有步收斂性,穩(wěn)定性高,而且不需要任何外來參數(shù)。
具體的實現(xiàn)步驟請參加wiki百科共軛梯度法。
下圖為共軛梯度法和梯度下降法搜索最優(yōu)解的路徑對比示意圖:
注:綠色為梯度下降法,紅色代表共軛梯度法
MATLAB代碼:
function [x] = conjgrad(A,b,x)
    r=b-A*x;
    p=r;
    rsold=r'*r;

    for i=1:length(b)
        Ap=A*p;
        alpha=rsold/(p'*Ap);
        x=x+alpha*p;
        r=r-alpha*Ap;
        rsnew=r'*r;
        if sqrt(rsnew)<1e-10
              break;
        end
        p=r+(rsnew/rsold)*p;
        rsold=rsnew;
    end
end

4. 啟發(fā)式優(yōu)化方法

啟發(fā)式方法指人在解決問題時所采取的一種根據(jù)經(jīng)驗規(guī)則進行發(fā)現(xiàn)的方法。其特點是在解決問題時,利用過去的經(jīng)驗,選擇已經(jīng)行之有效的方法,而不是系統(tǒng)地、以確定的步驟去尋求答案。啟發(fā)式優(yōu)化方法種類繁多,包括經(jīng)典的模擬退火方法、遺傳算法、蟻群算法以及粒子群算法等等。

還有一種特殊的優(yōu)化算法被稱之多目標優(yōu)化算法,它主要針對同時優(yōu)化多個目標(兩個及兩個以上)的優(yōu)化問題,這方面比較經(jīng)典的算法有NSGAII算法、MOEA/D算法以及人工免疫算法等。

數(shù)據(jù)分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個參數(shù)驗證碼對象,之后可以使用它調(diào)用相應的接口 initGeetest({ // 以下 4 個配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺檢測極驗服務器是否宕機 new_captcha: data.new_captcha, // 用于宕機時表示是新驗證碼的宕機 product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計時完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }