
Python中xrange與yield的用法實例分析
本文實例分析了Python中xrange與yield的用法。分享給大家供大家參考,具體如下:
range和xrange
Python提供了生成和返回整數(shù)序列的內(nèi)置函數(shù)range及xrange,雖然這兩個函數(shù)在功能上是差不多的,但其實現(xiàn)原理還是有差別的。range(n, m)返回的是一個從n到(m-1)的連續(xù)的整數(shù)列表,而xrange(n, m)返回的卻是一個特殊的目的對象,即xrange對象本身.
>>> range(1, 5)
[1, 2, 3, 4]
>>> xrange(1, 5)
xrange(1, 5)
>>> type(xrange(1, 5))
<type 'xrange'>
但在python2.x中xrange返回的卻不是一個迭代器,所以 x = xrange(n, m), x.next()會出錯。假如需要返回一個迭代器,需要調(diào)用iter(xrange(….))
>>> x = iter(xrange(1, 5))
>>> x.next()
1
>>> x.next()
2
也就是,調(diào)用range和xrange程序在運行中占用的內(nèi)存是不一樣的。使用range,程序?qū)⑹紫壬梢粋€list,然后再隱含調(diào)用list的iter獲取元素。而使用xrange,程序在每次循環(huán)產(chǎn)生的是一個xrange對象,這個對象是iterable,根據(jù)返回的這個xrange對象我們可以獲取元素。
生成器與yield
借助python的生成器,我們可以實現(xiàn)像內(nèi)置xrange函數(shù)的生成器,但這個生成器返回的是一個又浮點型值組成的序列而不是整型序列。
>>> def frange(start, stop, step=1.0):
while start < stop:
yield start
start += step
>>> frange(1.0, 5.0)
<generator object frange at 0x01343148>
>>> for i in frange(1.0, 5.0):
print i,
1.0 2.0 3.0 4.0
>>> x = iter(frange(1.0, 5.0))
>>> x.next()
1.0
>>> x.next()
2.0
在python中,在函數(shù)體出現(xiàn)一個或者多個yield,這個函數(shù)就是生成器(generator)。在調(diào)用生成器的時,系統(tǒng)不會執(zhí)行該生成器函數(shù)體。生成器被調(diào)用時將返回一個特殊的迭代器對象,這個個對象包含了生成器函數(shù)體、函數(shù)體的本地變量(包括函數(shù)體參數(shù))以及當(dāng)前的執(zhí)行位置。
在調(diào)用返回的迭代器對象的next方法時,生成器將執(zhí)行到下一個yield語句。
在執(zhí)行完yield語句時,函數(shù)的執(zhí)行將被“凍結(jié)”,保留執(zhí)行的當(dāng)前位置和未經(jīng)使用的本地變量,并將yield語句的執(zhí)行結(jié)果返回作為next方法的結(jié)果。繼續(xù)調(diào)用next則繼續(xù)調(diào)用yield,直到函數(shù)體運行結(jié)束或者執(zhí)行了return語句(return語句不能含有表達(dá)式)。
最常見的,生成器可以用來構(gòu)建迭代器。假如我們需要一個從1到N,然后從N到1的數(shù)字組成的序列,可以使用生成器:
>>> def updown(N):
for x in xrange(1, N): yield x
for x in xrange(N, 0, -1): yield x
>>> for i in updown(5):
print i,
當(dāng)一個函數(shù)需要返回一個列表的時候,使用生成器可能更靈活。生成器可以構(gòu)建一個誤解的迭代器,返回一個無限的結(jié)果序列。更進(jìn)一步,生成器構(gòu)建的迭代器執(zhí)行的是懶計算:只有函數(shù)需要時才會計算結(jié)果。
所以假如需要對一個序列進(jìn)行迭代功能,可以考慮迭代器。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓(xùn)練與驗證損失驟升:機器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11