
python中實現(xiàn)k-means聚類算法詳解
這篇文章主要介紹了python中實現(xiàn)k-means聚類算法詳解,具有一定參考價值,需要的朋友可以了解下。
算法優(yōu)缺點:
優(yōu)點:容易實現(xiàn)
缺點:可能收斂到局部最小值,在大規(guī)模數(shù)據(jù)集上收斂較慢
使用數(shù)據(jù)類型:數(shù)值型數(shù)據(jù)
算法思想
k-means算法實際上就是通過計算不同樣本間的距離來判斷他們的相近關(guān)系的,相近的就會放到同一個類別中去。
1.首先我們需要選擇一個k值,也就是我們希望把數(shù)據(jù)分成多少類,這里k值的選擇對結(jié)果的影響很大,Ng的課說的選擇方法有兩種一種是elbow method,簡單的說就是根據(jù)聚類的結(jié)果和k的函數(shù)關(guān)系判斷k為多少的時候效果最好。另一種則是根據(jù)具體的需求確定,比如說進行襯衫尺寸的聚類你可能就會考慮分成三類(L,M,S)等
2.然后我們需要選擇最初的聚類點(或者叫質(zhì)心),這里的選擇一般是隨機選擇的,代碼中的是在數(shù)據(jù)范圍內(nèi)隨機選擇,另一種是隨機選擇數(shù)據(jù)中的點。這些點的選擇會很大程度上影響到最終的結(jié)果,也就是說運氣不好的話就到局部最小值去了。這里有兩種處理方法,一種是多次取均值,另一種則是后面的改進算法(bisecting K-means)
3.終于我們開始進入正題了,接下來我們會把數(shù)據(jù)集中所有的點都計算下與這些質(zhì)心的距離,把它們分到離它們質(zhì)心最近的那一類中去。完成后我們則需要將每個簇算出平均值,用這個點作為新的質(zhì)心。反復(fù)重復(fù)這兩步,直到收斂我們就得到了最終的結(jié)果。
函數(shù)
loadDataSet(fileName)
從文件中讀取數(shù)據(jù)集
distEclud(vecA, vecB)
計算距離,這里用的是歐氏距離,當(dāng)然其他合理的距離都是可以的
randCent(dataSet, k)
隨機生成初始的質(zhì)心,這里是雖具選取數(shù)據(jù)范圍內(nèi)的點
kMeans(dataSet, k, distMeas=distEclud, createCent=randCent)
kmeans算法,輸入數(shù)據(jù)和k值。后面兩個事可選的距離計算方式和初始質(zhì)心的選擇方式
show(dataSet, k, centroids, clusterAssment)
可視化結(jié)果
#coding=utf-8
from numpy import *
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float, curLine)
dataMat.append(fltLine)
return dataMat
#計算兩個向量的距離,用的是歐幾里得距離
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2)))
#隨機生成初始的質(zhì)心(ng的課說的初始方式是隨機選K個點)
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))
for j in range(n):
minJ = min(dataSet[:,j])
rangeJ = float(max(array(dataSet)[:,j]) - minJ)
centroids[:,j] = minJ + rangeJ * random.rand(k,1)
return centroids
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#create mat to assign data points
#to a centroid, also holds SE of each point
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = inf
minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex:
clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
print centroids
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
return centroids, clusterAssment
def show(dataSet, k, centroids, clusterAssment):
from matplotlib import pyplot as plt
numSamples, dim = dataSet.shape
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', ' for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
plt.show()
def main():
dataMat = mat(loadDataSet('testSet.txt'))
myCentroids, clustAssing= kMeans(dataMat,4)
print myCentroids
show(dataMat, 4, myCentroids, clustAssing)
if __name__ == '__main__':
main()
但是有時候也會收斂到局部最小值,就像下面這樣,就是不幸收斂到局部最優(yōu)了
總結(jié)
以上就是本文關(guān)于python中實現(xiàn)k-means聚類算法詳解的全部內(nèi)容,希望對大家有所幫助
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10