
樸素貝葉斯分類器也是一類基于概率的分類器,它源于貝葉斯理論,假設(shè)樣本屬性之間相互獨立。
操作
利用樸素貝葉斯分類器對churn數(shù)據(jù)集進行分類:
導(dǎo)入e1071庫,使用naiveBayes函數(shù)構(gòu)建分類器
library(e1071)
classifier = naiveBayes(trainset[,!names(trainset) %in% c("churn")],trainset$churn)
classifier
Naive Bayes Classifier for Discrete Predictors
Call:
naiveBayes.default(x = trainset[, !names(trainset) %in% c("churn")],
y = trainset$churn)
A-priori probabilities:
trainset$churn
yes no
0.1477322 0.8522678
Conditional probabilities:
international_plan
trainset$churn 0 1
yes 0.70467836 0.29532164
no 0.93512418 0.06487582
voice_mail_plan
trainset$churn 0 1
yes 0.8333333 0.1666667
no 0.7045109 0.2954891
number_vmail_messages
trainset$churn [,1] [,2]
yes 5.099415 11.80618
no 8.674607 14.03670
total_day_minutes
trainset$churn [,1] [,2]
yes 205.8877 69.10294
no 174.2555 50.16357
total_day_calls
trainset$churn [,1] [,2]
yes 101.0234 22.02903
no 100.5509 19.67038
total_day_charge
trainset$churn [,1] [,2]
yes 35.00143 11.747587
no 29.62402 8.527769
total_eve_minutes
trainset$churn [,1] [,2]
yes 213.7269 51.92206
no 199.6197 50.53780
total_eve_calls
trainset$churn [,1] [,2]
yes 101.4123 19.48658
no 99.9478 20.16161
total_eve_charge
trainset$churn [,1] [,2]
yes 18.16702 4.413058
no 16.96789 4.295730
total_night_minutes
trainset$churn [,1] [,2]
yes 205.4640 47.11434
no 201.4184 51.34049
total_night_calls
trainset$churn [,1] [,2]
yes 100.2573 20.32690
no 100.0193 19.68094
total_night_charge
trainset$churn [,1] [,2]
yes 9.245994 2.12038
no 9.063882 2.31040
total_intl_minutes
trainset$churn [,1] [,2]
yes 10.73684 2.752784
no 10.15119 2.819086
total_intl_calls
trainset$churn [,1] [,2]
yes 4.134503 2.487395
no 4.514445 2.394724
total_intl_charge
trainset$churn [,1] [,2]
yes 2.899386 0.7432760
no 2.741343 0.7611755
number_customer_service_calls
trainset$churn [,1] [,2]
yes 2.204678 1.808803
no 1.441460 1.150114
生成測試數(shù)據(jù)集分類表:
bayes.table = table(predict(classifier,testset[,!names(testset) %in% c("churn")]),testset$churn)
bayes.table
yes no
yes 68 45
no 73 832
利用分類表生成混淆矩陣:
confusionMatrix(bayes.table)
Confusion Matrix and Statistics
yes no
yes 68 45
no 73 832
Accuracy : 0.8841
95% CI : (0.8628, 0.9031)
No Information Rate : 0.8615
P-Value [Acc > NIR] : 0.01880
Kappa : 0.4701
Mcnemar's Test P-Value : 0.01294
Sensitivity : 0.4823
Specificity : 0.9487
Pos Pred Value : 0.6018
Neg Pred Value : 0.9193
Prevalence : 0.1385
Detection Rate : 0.0668
Detection Prevalence : 0.1110
Balanced Accuracy : 0.7155
'Positive' Class : yes
說明
樸素貝葉斯算法假設(shè)特征變量都是條件獨立,即預(yù)測變量(x)對分類結(jié)果(c)的影響與其它變量對c的影響是相互獨立的。
先驗概率P(ωj)是由先驗知識而獲得的。
后驗概率P(ωj|x),即假設(shè)特征值x已知的條件下類別屬于ωj的概率。樸素貝葉斯算法的優(yōu)勢在于其簡單性,應(yīng)用也比較直接,適合用訓(xùn)練數(shù)據(jù)集規(guī)格較小,有可能存在某些缺失與噪音的情況,預(yù)測值的概率計算比較簡單,算法不足之處在于它假定的所有的特征變量之間相互獨立,并且同等重要,這個前提在現(xiàn)實世界中很難成立。
本節(jié)使用e1071包中的樸素貝葉斯分類器構(gòu)成分類模型,首先,我們假定在樸素貝葉斯函數(shù)中調(diào)用的所有變量(包括churn類標(biāo)號)都是輸入函數(shù)的第一輸入?yún)?shù),churn類標(biāo)號為算法的第二輸入?yún)?shù)。接下來,將分類模型指派給不同的變量分類。再輸出分類器的相關(guān)信息,包括函數(shù)調(diào)用、先驗概率以及條件概率等。我們也可以使用predict函數(shù)預(yù)測結(jié)果,并使用table函數(shù)得到測試數(shù)據(jù)集的分類表,最后,生成混淆矩陣計算分類模型。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03