
R語(yǔ)言回歸分析之影響分析
說(shuō)明
影響分析就是探查對(duì)估計(jì)有異常影響的數(shù)據(jù),如果一個(gè)樣本不遵從某個(gè)模型,但是其余數(shù)據(jù)遵從這個(gè)模型,稱為這個(gè)樣本點(diǎn)為強(qiáng)影響點(diǎn),也稱為高杠桿點(diǎn),影響分析的一個(gè)重要功能就是區(qū)分這樣的數(shù)據(jù)。
影響分析的方法有 dffits,dfbeta,dfbetas,cooks.distance,covratio,hatvalues,hat.
## 1. 回歸分析
21個(gè)兒童測(cè)試值,x為月份,y為智力
intellect<-data.frame(
x=c(15, 26, 10, 9, 15, 20, 18, 11, 8, 20, 7,
9, 10, 11, 11, 10, 12, 42, 17, 11, 10),
y=c(95, 71, 83, 91, 102, 87, 93, 100, 104, 94, 113,
96, 83, 84, 102, 100, 105, 57, 121, 86, 100)
)
lm.sol<-lm(y~1+x, data=intellect)
summary(lm.sol)
Call:
lm(formula = y ~ 1 + x, data = intellect)
Residuals:
Min 1Q Median 3Q Max
-15.604 -8.731 1.396 4.523 30.285
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.8738 5.0678 21.681 7.31e-15 ***
x -1.1270 0.3102 -3.633 0.00177 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 11.02 on 19 degrees of freedom
Multiple R-squared: 0.41, Adjusted R-squared: 0.3789
F-statistic: 13.2 on 1 and 19 DF, p-value: 0.001769
分別通過(guò)了t檢驗(yàn)與F檢驗(yàn)
#回歸診斷,調(diào)用influence.measures()并做回歸診斷圖
influence.measures(lm.sol)
Influence measures of
lm(formula = y ~ 1 + x, data = intellect) :
dfb.1_ dfb.x dffit cov.r cook.d hat inf
1 0.01664 0.00328 0.04127 1.166 8.97e-04 0.0479
2 0.18862 -0.33480 -0.40252 1.197 8.15e-02 0.1545
3 -0.33098 0.19239 -0.39114 0.936 7.17e-02 0.0628
4 -0.20004 0.12788 -0.22433 1.115 2.56e-02 0.0705
5 0.07532 0.01487 0.18686 1.085 1.77e-02 0.0479
6 0.00113 -0.00503 -0.00857 1.201 3.88e-05 0.0726
7 0.00447 0.03266 0.07722 1.170 3.13e-03 0.0580
8 0.04430 -0.02250 0.05630 1.174 1.67e-03 0.0567
9 0.07907 -0.05427 0.08541 1.200 3.83e-03 0.0799
10 -0.02283 0.10141 0.17284 1.152 1.54e-02 0.0726
11 0.31560 -0.22889 0.33200 1.088 5.48e-02 0.0908
12 -0.08422 0.05384 -0.09445 1.183 4.68e-03 0.0705
13 -0.33098 0.19239 -0.39114 0.936 7.17e-02 0.0628
14 -0.24681 0.12536 -0.31367 0.992 4.76e-02 0.0567
15 0.07968 -0.04047 0.10126 1.159 5.36e-03 0.0567
16 0.02791 -0.01622 0.03298 1.187 5.74e-04 0.0628
17 0.13328 -0.05493 0.18717 1.096 1.79e-02 0.0521
18 0.83112 -1.11275 -1.15578 2.959 6.78e-01 0.6516 *
19 0.14348 0.27317 0.85374 0.396 2.23e-01 0.0531 *
20 -0.20761 0.10544 -0.26385 1.043 3.45e-02 0.0567
21 0.02791 -0.01622 0.03298 1.187 5.74e-04 0.0628
influence.measures(lm.sol)
op <- par(mfrow=c(2,2), mar=0.4+c(4,4,1,1),
oma= c(0,0,2,0))
plot(lm.sol, 1:4)
par(op)
influence.measures(lm.sol)函數(shù)得到的回歸診斷共有7列,
其中1,2列是dfbetas值(對(duì)應(yīng)常數(shù)與變量x),
第三例是dffits的準(zhǔn)則值,
第三例是covratio的準(zhǔn)則值,
第五例是cook值,第6例是帽子值(高杠桿值),
第七例影響點(diǎn)的標(biāo)記,
inf表明18,19號(hào)是強(qiáng)影響點(diǎn)。
對(duì)診斷圖分析:
第一張圖是殘差圖,殘差的方差滿足齊性。
第二張圖是正態(tài)QQ圖,除19號(hào)外基本都在直線上,也就是說(shuō)除19號(hào)點(diǎn)外殘差滿足正態(tài)性。
第三張圖標(biāo)準(zhǔn)差的平方根與預(yù)測(cè)值的散點(diǎn)圖,19號(hào)樣本的值大于1.5,說(shuō)明19號(hào)樣本可能是異常值點(diǎn)(0.95范圍外)
第四張圖給出了COOK距離值,說(shuō)明18號(hào)點(diǎn)可能是強(qiáng)影響點(diǎn)(高杠桿點(diǎn))
處理強(qiáng)影響點(diǎn):首先,是否錄入有誤。其次,修正數(shù)據(jù)。如果無(wú)法判斷是否有誤,采用剔除與加權(quán)的辦法進(jìn)行修正數(shù)據(jù)。
n<-length(intellect$x)
weights<-rep(1, n); weights[18]<-0.5
lm.correct<-lm(y~1+x, data=intellect, subset=-19,
weights=weights)
summary(lm.correct)
Call:
lm(formula = y ~ 1 + x, data = intellect, subset = -19, weights = weights)
Weighted Residuals:
Min 1Q Median 3Q Max
-14.300 -7.539 2.700 5.183 12.229
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 108.8716 4.4290 24.58 2.67e-15 ***
x -1.1572 0.2937 -3.94 0.000959 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.617 on 18 degrees of freedom
Multiple R-squared: 0.4631, Adjusted R-squared: 0.4333
F-statistic: 15.53 on 1 and 18 DF, p-value: 0.0009594
在程序中,subset = -19表示去掉19樣本。weights<-rep(1, n)所有點(diǎn)權(quán)賦為1,weights[18]<- 0.5,18號(hào)點(diǎn)為0.5,這樣可以直觀認(rèn)為18號(hào)點(diǎn)對(duì)方程影響減少一半。
驗(yàn)證:兩次計(jì)算的回歸直線,和數(shù)據(jù)的散點(diǎn)圖。
attach(intellect)
par(mai=c(0.8, 0.8, 0.2, 0.2))
plot(x, y, cex=1.2, pch=21, col="red", bg="orange")
abline(lm.sol, col="blue", lwd=2)
text(x[c(19, 18)], y[c(19, 18)],
label=c("19", "18"), adj=c(1.5, 0.3))
detach()
abline(lm.correct, col="red", lwd=2, lty=5)
legend(30, 120, c("Points", "Regression", "Correct Reg"),
pch=c(19, NA, NA), lty=c(NA, 1,5),
col=c("orange", "blue", "red"))
從圖中可以看出,19號(hào)樣本的殘差過(guò)大,而18號(hào)樣本對(duì)整體回歸直線有較大的影響。
檢驗(yàn):看修正之后是否有效
op <- par(mfrow=c(2,2), mar=0.4+c(4,4,1,1), oma= c(0,0,2,0))
plot(lm.correct, 1:4)
par(op)
修正后的診斷圖
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10