
1、數(shù)據(jù)挖掘環(huán)境
數(shù)據(jù)挖掘是指一個完整的過程,該過程從大型數(shù)據(jù)庫中挖掘先前未知的,有效的,可實用的信息,并使用這些信息做出決策或豐富知識. 數(shù)據(jù)挖掘環(huán)境可示意如下圖:
2、數(shù)據(jù)挖掘過程圖
下圖描述了數(shù)據(jù)挖掘的基本過程和主要步驟
數(shù)據(jù)挖掘的基本過程和主要步驟
3、數(shù)據(jù)挖掘過程工作量
在數(shù)據(jù)挖掘中被研究的業(yè)務(wù)對象是整個過程的基礎(chǔ),它驅(qū)動了整個數(shù)據(jù)挖掘過程,也是檢驗最后結(jié)果和指引分析人員完成數(shù)據(jù)挖掘的依據(jù)和顧問.圖2各步驟是按一定順序完成的,當然整個過程中還會存在步驟間的反饋.數(shù)據(jù)挖掘的過程并不是自動的,絕大多數(shù)的工作需要人工完成.圖3給出了各步驟在整個過程中的工作量之比.可以看到,60%的時間用在數(shù)據(jù)準備上,這說明了數(shù)據(jù)挖掘對數(shù)據(jù)的嚴格要求,而后挖掘工作僅占總工作量的10%.
圖3數(shù)據(jù)挖掘過程工作量比例
4、數(shù)據(jù)挖掘過程簡介
過程中各步驟的大體內(nèi)容如下:
(1). 確定業(yè)務(wù)對象
清晰地定義出業(yè)務(wù)問題,認清數(shù)據(jù)挖掘的目的是數(shù)據(jù)挖掘的重要一步.挖掘的最后結(jié)構(gòu)是不可預(yù)測的,但要探索的問題應(yīng)是有預(yù)見的,為了數(shù)據(jù)挖掘而數(shù)據(jù)挖掘則帶有盲目性,是不會成功的.
(2). 數(shù)據(jù)準備
1)、數(shù)據(jù)的選擇
搜索所有與業(yè)務(wù)對象有關(guān)的內(nèi)部和外部數(shù)據(jù)信息,并從中選擇出適用于數(shù)據(jù)挖掘應(yīng)用的數(shù)據(jù).
2)、數(shù)據(jù)的預(yù)處理
研究數(shù)據(jù)的質(zhì)量,為進一步的分析作準備.并確定將要進行的挖掘操作的類型.
3)、數(shù)據(jù)的轉(zhuǎn)換
將數(shù)據(jù)轉(zhuǎn)換成一個分析模型.這個分析模型是針對挖掘算法建立的.建立一個真正適合挖掘算法的分析模型是數(shù)據(jù)挖掘成功的關(guān)鍵.
(3). 數(shù)據(jù)挖掘
對所得到的經(jīng)過轉(zhuǎn)換的數(shù)據(jù)進行挖掘.除了完善從選擇合適的挖掘算法外,其余一切工作都能自動地完成.
(4). 結(jié)果分析
解釋并評估結(jié)果.其使用的分析方法一般應(yīng)作數(shù)據(jù)挖掘操作而定,通常會用到可視化技術(shù).
(5). 知識的同化
將分析所得到的知識集成到業(yè)務(wù)信息系統(tǒng)的組織結(jié)構(gòu)中去.
5、數(shù)據(jù)挖掘需要的人員
數(shù)據(jù)挖掘過程的分步實現(xiàn),不同的步會需要是有不同專長的人員,他們大體可以分為三類.
業(yè)務(wù)分析人員:要求精通業(yè)務(wù),能夠解釋業(yè)務(wù)對象,并根據(jù)各業(yè)務(wù)對象確定出用于數(shù)據(jù)定義和挖掘算法的業(yè)務(wù)需求.
數(shù)據(jù)分析人員:精通數(shù)據(jù)分析技術(shù),并對統(tǒng)計學(xué)有較熟練的掌握,有能力把業(yè)務(wù)需求轉(zhuǎn)化為數(shù)據(jù)挖掘的各步操作,并為每步操作選擇合適的技術(shù).
數(shù)據(jù)管理人員:精通數(shù)據(jù)管理技術(shù),并從數(shù)據(jù)庫或數(shù)據(jù)倉庫中收集數(shù)據(jù).
從上可見,數(shù)據(jù)挖掘是一個多種專家合作的過程,也是一個在資金上和技術(shù)上高投入的過程.這一過程要反復(fù)進行牞在反復(fù)過程中,不斷地趨近事物的本質(zhì),不斷地優(yōu)先問題的解決方案。數(shù)據(jù)重組和細分添加和拆分記錄選取數(shù)據(jù)樣本可視化數(shù)據(jù)探索聚類分析神經(jīng)網(wǎng)絡(luò)、決策樹數(shù)理統(tǒng)計、時間序列結(jié)論綜合解釋評價數(shù)據(jù)知識數(shù)據(jù)取樣數(shù)據(jù)探索數(shù)據(jù)調(diào)整模型化評價。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10