99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀數(shù)據(jù)挖掘的10大分析方法
數(shù)據(jù)挖掘的10大分析方法
2014-12-10
收藏

不僅僅是選中的十大算法,其實參加評選的18種算法,實際上隨便拿出一種來都可以稱得上是經(jīng)典算法,它們在數(shù)據(jù)挖掘領域都產(chǎn)生了極為深遠的影響。

1.C4.5

C4.5算法是機器學習算法中的一種分類決策樹算法,其核心算法是ID3算法.C4.5算法繼承了ID3算法的優(yōu)點,并在以下幾方面對ID3算法進行了改進:

1)用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;

2)在樹構造過程中進行剪枝;

3)能夠完成對連續(xù)屬性的離散化處理;

4)能夠對不完整數(shù)據(jù)進行處理。

C4.5算法有如下優(yōu)點:產(chǎn)生的分類規(guī)則易于理解,準確率較高。其缺點是:在構造樹的過程中,需要對數(shù)據(jù)集進行多次的順序掃描和排序,因而導致算法的低效。

2.Thek-meansalgorithm即K-Means算法

k-meansalgorithm算法是一個聚類算法,把n的對象根據(jù)他們的屬性分為k個分割,k    3.Supportvectormachines

支持向量機,英文為SupportVectorMachine,簡稱SV機(論文中一般簡稱SVM)。它是一種監(jiān)督式學習的方法,它廣泛的應用于統(tǒng)計分類以及回歸分析中。支持向量機將向量映射到一個更高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數(shù)據(jù)的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.CBurges的《模式識別支持向量機指南》。vanderWalt和Barnard將支持向量機和其他分類器進行了比較。

4.TheApriorialgorithm

Apriori算法是一種最有影響的挖掘布爾關聯(lián)規(guī)則頻繁項集的算法。其核心是基于兩階段頻集思想的遞推算法。該關聯(lián)規(guī)則在分類上屬于單維、單層、布爾關聯(lián)規(guī)則。在這里,所有支持度大于最小支持度的項集稱為頻繁項集,簡稱頻集。

5.最大期望(EM)算法

在統(tǒng)計計算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中尋找參數(shù)最大似然估計的算法,其中概率模型依賴于無法觀測的隱藏變量(LatentVariabl)。最大期望經(jīng)常用在機器學習計算機視覺的數(shù)據(jù)集聚(DataClustering)領域。

6.PageRank

PageRank是Google算法的重要內(nèi)容。2001年9月被授予美國專利,專利人是Google創(chuàng)始人之一拉里·佩奇(LarryPage)。因此,PageRank里的page不是指網(wǎng)頁,而是指佩奇,即這個等級方法是以佩奇來命名的。

PageRank根據(jù)網(wǎng)站的外部鏈接和內(nèi)部鏈接的數(shù)量和質量倆衡量網(wǎng)站的價值。PageRank背后的概念是,每個到頁面的鏈接都是對該頁面的一次投票,被鏈接的越多,就意味著被其他網(wǎng)站投票越多。這個就是所謂的“鏈接流行度”——衡量多少人愿意將他們的網(wǎng)站和你的網(wǎng)站掛鉤。PageRank這個概念引自學術中一篇論文的被引述的頻度——即被別人引述的次數(shù)越多,一般判斷這篇論文的共識性就越高。

7.AdaBoost

Adaboost是一種迭代算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然后把這些弱分類器集合起來,構成一個更強的最終分類器(強分類器)。其算法本身是通過改變數(shù)據(jù)分布來實現(xiàn)的,它根據(jù)每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的準確率,來確定每個樣本的權值。將修改過權值的新數(shù)據(jù)集送給下層分類器進行訓練,最后將每次訓練得到的分類器最后融合起來,作為最后的決策分類器。

8.kNN:k-nearestneighborclassification

K最近鄰(k-NearestNeighbor,KNN)分類算法,是一個理論上比較成熟的方法,也是最簡單的機器學習算法之一。該方法的思路是:如果一個樣本在特征空間中的k個最相似(即特征空間中最鄰近)的樣本中的大多數(shù)屬于某一個類別,則該樣本也屬于這個類別。

9.NaiveBayes

在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(DecisionTreeModel)和樸素貝葉斯模型(NaiveBayesianModel,NBC)。樸素貝葉斯模型發(fā)源于古典數(shù)學理論,有著堅實的數(shù)學基礎,以及穩(wěn)定的分類效率。同時,NBC模型所需估計的參數(shù)很少,對缺失數(shù)據(jù)不太敏感,算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上并非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬性個數(shù)比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。

10.CART:分類與回歸樹

CART,ClassificationandRegressionTrees。在分類樹下面有兩個關鍵的思想。第一個是關于遞歸地劃分自變量空間的想法;第二個想法是用驗證數(shù)據(jù)進行剪枝。

數(shù)據(jù)分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個參數(shù)驗證碼對象,之后可以使用它調(diào)用相應的接口 initGeetest({ // 以下 4 個配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺檢測極驗服務器是否宕機 new_captcha: data.new_captcha, // 用于宕機時表示是新驗證碼的宕機 product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計時完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }