
這10大易犯錯誤包括:
0. 缺乏數(shù)據(jù)(Lack Data)
1. 太關注訓練(Focus on Training)
2. 只依賴一項技術(Rely on One Technique)
3. 提錯了問題(Ask the Wrong Question)
4. 只靠數(shù)據(jù)來說話(Listen (only) to the Data)
5. 使用了未來的信息(Accept Leaks from the Future)
6. 拋棄了不該忽略的案例(Discount Pesky Cases)
7. 輕信預測(Extrapolate)
8. 試圖回答所有問題(Answer Every Inquiry)
9. 隨便地進行抽樣(Sample Casually)
10. 太相信最佳模型(Believe the Best Model)
0. 缺乏數(shù)據(jù)(Lack Data)
對于分類問題或預估問題來說,常常缺乏準確標注的案例。
例如:
-欺詐偵測(Fraud Detection):在上百萬的交易中,可能只有屈指可數(shù)的欺詐交易,還有很多的欺詐交易沒有被正確標注出來,這就需要在建模前花費大量人力來修正。
-信用評分(Credit Scoring):需要對潛在的高風險客戶進行長期跟蹤(比如兩年),從而積累足夠的評分樣本。
1. 太關注訓練(Focus on Training)
IDMer:就象體育訓練中越來越注重實戰(zhàn)訓練,因為單純的封閉式訓練常常會訓練時狀態(tài)神勇,比賽時一塌糊涂。
實際上,只有樣本外數(shù)據(jù)上的模型評分結果才真正有用!(否則的話,直接用參照表好了!)
例如:
-癌癥檢測(Cancer detection):MD Anderson的醫(yī)生和研究人員(1993)使用神經(jīng)網(wǎng)絡來進行癌癥檢測,驚奇地發(fā)現(xiàn),訓練時間越長(從幾天延長至數(shù)周),對訓練集的性能改善非常輕微,但在測試集上的性能卻明顯下降。
-機器學習或計算機科學研究者常常試圖讓模型在已知數(shù)據(jù)上表現(xiàn)最優(yōu),這樣做的結果通常會導致過度擬合(overfit)。
解決方法:
解決這個問題的典型方法是重抽樣(Re-Sampling)。重抽樣技術包括:bootstrap、cross-validation、jackknife、leave-one-out…等等。
2. 只依賴一項技術(Rely on One Technique)
IDMer:這個錯誤和第10種錯誤有相通之處,請同時參照其解決方法。沒有對比也就沒有所謂的好壞,辯證法的思想在此體現(xiàn)無遺。
“當小孩子手拿一把錘子時,整個世界看起來就是一枚釘子。”要想讓工作盡善盡美,就需要一套完整的工具箱。
不要簡單地信賴你用單個方法分析的結果,至少要和傳統(tǒng)方法(比如線性回歸或線性判別分析)做個比較。
研究結果:按照《神經(jīng)網(wǎng)絡》期刊的統(tǒng)計,在過去3年來,只有1/6的文章中做到了上述兩點。也就是說,在獨立于訓練樣本之外的測試集上進行了開集測試,并與其它廣泛采用的方法進行了對比。
解決方法:
使用一系列好的工具和方法。(每種工具或方法有可能帶來5%~10%的改進)。
3. 提錯了問題(Ask the Wrong Question)
IDMer:一般在分類算法中都會給出分類精度作為衡量模型好壞的標準,但在實際項目中我們卻幾乎不看這個指標。為什么?因為那不是我們關注的目標。
項目的目標:一定要鎖定正確的目標
例如:
⑴欺詐偵測(關注的是正例!)(Shannon實驗室在國際長途電話上的分析):不要試圖在一般的通話中把欺詐和非欺詐行為分類出來,重點應放在如何描述正常通話的特征,然后據(jù)此發(fā)現(xiàn)異常通話行為。
?、颇P偷哪繕耍鹤層嬎銠C去做你希望它做的事
大多數(shù)研究人員會沉迷于模型的收斂性來盡量降低誤差,這樣讓他們可以獲得數(shù)學上的美感。但更應該讓計算機做的事情是如何改善業(yè)務,而不是僅僅側重模型計算上的精度。
4. 只靠數(shù)據(jù)來說話(Listen (only) to the Data)
IDMer:“讓數(shù)據(jù)說話”沒有錯,關鍵是還要記得另一句話:兼聽則明,偏聽則暗!如果數(shù)據(jù)+工具就可以解決問題的話,還要人做什么呢?
⑴.投機取巧的數(shù)據(jù):數(shù)據(jù)本身只能幫助分析人員找到結果是什么,但它并不能告訴你結果是對還是錯。
?、?經(jīng)過設計的實驗:某些實驗設計中摻雜了人為的成分,這樣的實驗結果也常常不可信。
5. 使用了未來的信息(Accept Leaks from the Future)
IDMer:看似不可能,卻是實際中很容易犯的錯誤,特別是你面對成千上萬個變量的時候。認真、仔細、有條理是數(shù)據(jù)挖掘人員的基本要求。
預報(Forecast)示例:預報芝加哥銀行在某天的利率,使用神經(jīng)網(wǎng)絡建模,模型的準確率達到95%,但在模型中卻使用了該天的利率作為輸入變量。
金融業(yè)中的預報示例:使用3日的移動平均來預報,但卻把移動平均的中點設在今天。
解決方法:
要仔細查看那些讓結果表現(xiàn)得異常好的變量,這些變量有可能是不應該使用,或者不應該直接使用的。
給數(shù)據(jù)加上時間戳,避免被誤用。
6. 拋棄了不該忽略的案例(Discount Pesky Cases)
IDMer:到底是“寧為雞頭,不為鳳尾”,還是“大隱隱于市,小隱隱于野”?不同的人生態(tài)度可以有同樣精彩的人生,不同的數(shù)據(jù)也可能蘊含同樣重要的價值。
異常值可能會導致錯誤的結果(比如價格中的小數(shù)點標錯了),但也可能是問題的答案(比如臭氧洞)。所以需要仔細檢查這些異常。
研究中最讓激動的話語不是“啊哈!”,而是“這就有點奇怪了……”
數(shù)據(jù)中的不一致性有可能會是解決問題的線索,深挖下去也許可以解決一個大的業(yè)務問題。
例如:
在直郵營銷中,在對家庭地址的合并和清洗過程中發(fā)現(xiàn)的數(shù)據(jù)不一致,反而可能是新的營銷機會。
解決方法:
將數(shù)據(jù)可視化可以幫助你分析大量的假設是否成立。
7. 輕信預測(Extrapolate)
IDMer:依然是辯證法中的觀點,事物都是不斷發(fā)展變化的。
人們常常在經(jīng)驗不多的時候輕易得出一些結論。
即便發(fā)現(xiàn)了一些反例,人們也不太愿意放棄原先的想法。
維度咒語:在低維度上的直覺,放在高維度空間中,常常是毫無意義的。
解決方法:
進化論。沒有正確的結論,只有越來越準確的結論。
8. 試圖回答所有問題(Answer Every Inquiry)
IDMer:有點像我爬山時鼓勵自己的一句話“我不知道什么時候能登上山峰,但我知道爬一步就離終點近一步?!?/span>
“不知道”是一種有意義的模型結果。
模型也許無法100%準確回答問題,但至少可以幫我們估計出現(xiàn)某種結果的可能性。
9. 隨便地進行抽樣(Sample Casually)
?、? 降低抽樣水平。例如,MD直郵公司進行響應預測分析,但發(fā)現(xiàn)數(shù)據(jù)集中的不響應客戶占比太高(總共一百萬直郵客戶,其中超過99%的人未對營銷做出響應)。于是建模人員做了如下抽樣:把所有響應者放入樣本集,然后在所有不響應者中進行系統(tǒng)抽樣,即每隔10人抽一個放入樣本集,直到樣本集達到10萬人。但模型居然得出如下規(guī)則:凡是居住在Ketchikan、Wrangell和Ward Cove Alaska的人都會響應營銷。這顯然是有問題的結論。(問題就出在這種抽樣方法上,因為原始數(shù)據(jù)集已經(jīng)按照郵政編碼排序,上面這三個地區(qū)中不響應者未能被抽取到樣本集中,故此得出了這種結論)。
解決方法:
“喝前搖一搖!”先打亂原始數(shù)據(jù)集中的順序,從而保證抽樣的隨機性。
⑵.提高抽樣水平。例如,在信用評分中,因為違約客戶的占比一般都非常低,所以在建模時常常會人為調高違約客戶的占比(比如把這些違約客戶的權重提高5倍)。建模中發(fā)現(xiàn),隨著模型越來越復雜,判別違約客戶的準確率也越來越高,但對正??蛻舻恼`判率也隨之升高。(問題出在數(shù)據(jù)集的劃分上。在把原始數(shù)據(jù)集劃分為訓練集和測試集時,原始數(shù)據(jù)集中違約客戶的權重已經(jīng)被提高過了)
解決方法:
先進行數(shù)據(jù)集劃分,然后再提高訓練集中違約客戶的權重。
10. 太相信最佳模型(Believe the Best Model)
IDMer:還是那句老話-“沒有最好,只有更好!”
可解釋性并不一定總是必要的??雌饋聿⒉煌耆_或者可以解釋的模型,有時也會有用。
“最佳”模型中使用的一些變量,會分散人們太多的注意力。(不可解釋性有時也是一個優(yōu)點)
一般來說,很多變量看起來彼此都很相似,而最佳模型的結構看上去也千差萬別,無跡可循。但需注意的是,結構上相似并不意味著功能上也相似。
解決方法:
把多個模型集裝起來可能會帶來更好更穩(wěn)定的結果
這10大易犯錯誤包括:
0. 缺乏數(shù)據(jù)(Lack Data)
1. 太關注訓練(Focus on Training)
2. 只依賴一項技術(Rely on One Technique)
3. 提錯了問題(Ask the Wrong Question)
4. 只靠數(shù)據(jù)來說話(Listen (only) to the Data)
5. 使用了未來的信息(Accept Leaks from the Future)
6. 拋棄了不該忽略的案例(Discount Pesky Cases)
7. 輕信預測(Extrapolate)
8. 試圖回答所有問題(Answer Every Inquiry)
9. 隨便地進行抽樣(Sample Casually)
10. 太相信最佳模型(Believe the Best Model)
0. 缺乏數(shù)據(jù)(Lack Data)
對于分類問題或預估問題來說,常常缺乏準確標注的案例。
例如:
-欺詐偵測(Fraud Detection):在上百萬的交易中,可能只有屈指可數(shù)的欺詐交易,還有很多的欺詐交易沒有被正確標注出來,這就需要在建模前花費大量人力來修正。
-信用評分(Credit Scoring):需要對潛在的高風險客戶進行長期跟蹤(比如兩年),從而積累足夠的評分樣本。
1. 太關注訓練(Focus on Training)
IDMer:就象體育訓練中越來越注重實戰(zhàn)訓練,因為單純的封閉式訓練常常會訓練時狀態(tài)神勇,比賽時一塌糊涂。
實際上,只有樣本外數(shù)據(jù)上的模型評分結果才真正有用!(否則的話,直接用參照表好了!)
例如:
-癌癥檢測(Cancer detection):MD Anderson的醫(yī)生和研究人員(1993)使用神經(jīng)網(wǎng)絡來進行癌癥檢測,驚奇地發(fā)現(xiàn),訓練時間越長(從幾天延長至數(shù)周),對訓練集的性能改善非常輕微,但在測試集上的性能卻明顯下降。
-機器學習或計算機科學研究者常常試圖讓模型在已知數(shù)據(jù)上表現(xiàn)最優(yōu),這樣做的結果通常會導致過度擬合(overfit)。
解決方法:
解決這個問題的典型方法是重抽樣(Re-Sampling)。重抽樣技術包括:bootstrap、cross-validation、jackknife、leave-one-out…等等。
2. 只依賴一項技術(Rely on One Technique)
IDMer:這個錯誤和第10種錯誤有相通之處,請同時參照其解決方法。沒有對比也就沒有所謂的好壞,辯證法的思想在此體現(xiàn)無遺。
“當小孩子手拿一把錘子時,整個世界看起來就是一枚釘子?!币胱尮ぷ鞅M善盡美,就需要一套完整的工具箱。
不要簡單地信賴你用單個方法分析的結果,至少要和傳統(tǒng)方法(比如線性回歸或線性判別分析)做個比較。
研究結果:按照《神經(jīng)網(wǎng)絡》期刊的統(tǒng)計,在過去3年來,只有1/6的文章中做到了上述兩點。也就是說,在獨立于訓練樣本之外的測試集上進行了開集測試,并與其它廣泛采用的方法進行了對比。
解決方法:
使用一系列好的工具和方法。(每種工具或方法有可能帶來5%~10%的改進)。
3. 提錯了問題(Ask the Wrong Question)
IDMer:一般在分類算法中都會給出分類精度作為衡量模型好壞的標準,但在實際項目中我們卻幾乎不看這個指標。為什么?因為那不是我們關注的目標。
項目的目標:一定要鎖定正確的目標
例如:
?、牌墼p偵測(關注的是正例!)(Shannon實驗室在國際長途電話上的分析):不要試圖在一般的通話中把欺詐和非欺詐行為分類出來,重點應放在如何描述正常通話的特征,然后據(jù)此發(fā)現(xiàn)異常通話行為。
?、颇P偷哪繕耍鹤層嬎銠C去做你希望它做的事
大多數(shù)研究人員會沉迷于模型的收斂性來盡量降低誤差,這樣讓他們可以獲得數(shù)學上的美感。但更應該讓計算機做的事情是如何改善業(yè)務,而不是僅僅側重模型計算上的精度。
4. 只靠數(shù)據(jù)來說話(Listen (only) to the Data)
IDMer:“讓數(shù)據(jù)說話”沒有錯,關鍵是還要記得另一句話:兼聽則明,偏聽則暗!如果數(shù)據(jù)+工具就可以解決問題的話,還要人做什么呢?
?、?投機取巧的數(shù)據(jù):數(shù)據(jù)本身只能幫助分析人員找到結果是什么,但它并不能告訴你結果是對還是錯。
⑵.經(jīng)過設計的實驗:某些實驗設計中摻雜了人為的成分,這樣的實驗結果也常常不可信。
5. 使用了未來的信息(Accept Leaks from the Future)
IDMer:看似不可能,卻是實際中很容易犯的錯誤,特別是你面對成千上萬個變量的時候。認真、仔細、有條理是數(shù)據(jù)挖掘人員的基本要求。
預報(Forecast)示例:預報芝加哥銀行在某天的利率,使用神經(jīng)網(wǎng)絡建模,模型的準確率達到95%,但在模型中卻使用了該天的利率作為輸入變量。
金融業(yè)中的預報示例:使用3日的移動平均來預報,但卻把移動平均的中點設在今天。
解決方法:
要仔細查看那些讓結果表現(xiàn)得異常好的變量,這些變量有可能是不應該使用,或者不應該直接使用的。
給數(shù)據(jù)加上時間戳,避免被誤用。
6. 拋棄了不該忽略的案例(Discount Pesky Cases)
IDMer:到底是“寧為雞頭,不為鳳尾”,還是“大隱隱于市,小隱隱于野”?不同的人生態(tài)度可以有同樣精彩的人生,不同的數(shù)據(jù)也可能蘊含同樣重要的價值。
異常值可能會導致錯誤的結果(比如價格中的小數(shù)點標錯了),但也可能是問題的答案(比如臭氧洞)。所以需要仔細檢查這些異常。
研究中最讓激動的話語不是“啊哈!”,而是“這就有點奇怪了……”
數(shù)據(jù)中的不一致性有可能會是解決問題的線索,深挖下去也許可以解決一個大的業(yè)務問題。
例如:
在直郵營銷中,在對家庭地址的合并和清洗過程中發(fā)現(xiàn)的數(shù)據(jù)不一致,反而可能是新的營銷機會。
解決方法:
將數(shù)據(jù)可視化可以幫助你分析大量的假設是否成立。
7. 輕信預測(Extrapolate)
IDMer:依然是辯證法中的觀點,事物都是不斷發(fā)展變化的。
人們常常在經(jīng)驗不多的時候輕易得出一些結論。
即便發(fā)現(xiàn)了一些反例,人們也不太愿意放棄原先的想法。
維度咒語:在低維度上的直覺,放在高維度空間中,常常是毫無意義的。
解決方法:
進化論。沒有正確的結論,只有越來越準確的結論。
8. 試圖回答所有問題(Answer Every Inquiry)
IDMer:有點像我爬山時鼓勵自己的一句話“我不知道什么時候能登上山峰,但我知道爬一步就離終點近一步?!?/span>
“不知道”是一種有意義的模型結果。
模型也許無法100%準確回答問題,但至少可以幫我們估計出現(xiàn)某種結果的可能性。
9. 隨便地進行抽樣(Sample Casually)
⑴. 降低抽樣水平。例如,MD直郵公司進行響應預測分析,但發(fā)現(xiàn)數(shù)據(jù)集中的不響應客戶占比太高(總共一百萬直郵客戶,其中超過99%的人未對營銷做出響應)。于是建模人員做了如下抽樣:把所有響應者放入樣本集,然后在所有不響應者中進行系統(tǒng)抽樣,即每隔10人抽一個放入樣本集,直到樣本集達到10萬人。但模型居然得出如下規(guī)則:凡是居住在Ketchikan、Wrangell和Ward Cove Alaska的人都會響應營銷。這顯然是有問題的結論。(問題就出在這種抽樣方法上,因為原始數(shù)據(jù)集已經(jīng)按照郵政編碼排序,上面這三個地區(qū)中不響應者未能被抽取到樣本集中,故此得出了這種結論)。
解決方法:
“喝前搖一搖!”先打亂原始數(shù)據(jù)集中的順序,從而保證抽樣的隨機性。
⑵.提高抽樣水平。例如,在信用評分中,因為違約客戶的占比一般都非常低,所以在建模時常常會人為調高違約客戶的占比(比如把這些違約客戶的權重提高5倍)。建模中發(fā)現(xiàn),隨著模型越來越復雜,判別違約客戶的準確率也越來越高,但對正??蛻舻恼`判率也隨之升高。(問題出在數(shù)據(jù)集的劃分上。在把原始數(shù)據(jù)集劃分為訓練集和測試集時,原始數(shù)據(jù)集中違約客戶的權重已經(jīng)被提高過了)
解決方法:
先進行數(shù)據(jù)集劃分,然后再提高訓練集中違約客戶的權重。
10. 太相信最佳模型(Believe the Best Model)
IDMer:還是那句老話-“沒有最好,只有更好!”
可解釋性并不一定總是必要的。看起來并不完全正確或者可以解釋的模型,有時也會有用。
“最佳”模型中使用的一些變量,會分散人們太多的注意力。(不可解釋性有時也是一個優(yōu)點)
一般來說,很多變量看起來彼此都很相似,而最佳模型的結構看上去也千差萬別,無跡可循。但需注意的是,結構上相似并不意味著功能上也相似。更多相關文章:CDA數(shù)據(jù)分析師官網(wǎng)
解決方法:
把多個模型集裝起來可能會帶來更好更穩(wěn)定的結果
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關鍵? 在循環(huán)神經(jīng)網(wǎng)絡(RNN)家族中,長短期記憶網(wǎng)絡(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務的價值轉化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數(shù)據(jù)查詢到趨勢預判? ? 在數(shù)據(jù)驅動決策的時代,預測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內權威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網(wǎng)絡(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調研數(shù)據(jù)中的深度應用? 市場調研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉日期:解鎖數(shù)據(jù)處理的關鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎 ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03