
圖像處理之Harris角度檢測(cè)算法
Harris角度檢測(cè)是通過數(shù)學(xué)計(jì)算在圖像上發(fā)現(xiàn)角度特征的一種算法,而且其具有旋轉(zhuǎn)不
變性的特質(zhì)。OpenCV中的Shi-Tomasi角度檢測(cè)就是基于Harris角度檢測(cè)改進(jìn)算法。
基本原理:
角度是一幅圖像上最明顯與重要的特征,對(duì)于一階導(dǎo)數(shù)而言,角度在各個(gè)方向的變化是
最大的,而邊緣區(qū)域在只是某一方向有明顯變化。一個(gè)直觀的圖示如下:
數(shù)學(xué)原理:
基本數(shù)學(xué)公式如下:
其中W(x, y)表示移動(dòng)窗口,I(x, y)表示像素灰度值強(qiáng)度,范圍為0~255。根據(jù)泰勒級(jí)數(shù)
計(jì)算一階到N階的偏導(dǎo)數(shù),最終得到一個(gè)Harris矩陣公式:
根據(jù)Harris的矩陣計(jì)算矩陣特征值,然后計(jì)算Harris角度響應(yīng)值:
其中K為系數(shù)值,通常取值范圍為0.04 ~ 0.06之間。
算法詳細(xì)步驟
第一步:計(jì)算圖像X方向與Y方向的一階高斯偏導(dǎo)數(shù)Ix與Iy
第二步:根據(jù)第一步結(jié)果得到Ix^2 , Iy^2與Ix*Iy值
第三步:高斯模糊第二步三個(gè)值得到Sxx, Syy, Sxy
第四部:定義每個(gè)像素的Harris矩陣,計(jì)算出矩陣的兩個(gè)特質(zhì)值
第五步:計(jì)算出每個(gè)像素的R值
第六步:使用3X3或者5X5的窗口,實(shí)現(xiàn)非最大值壓制
第七步:根據(jù)角度檢測(cè)結(jié)果計(jì)算,最提取到的關(guān)鍵點(diǎn)以綠色標(biāo)記,顯示在原圖上。
程序關(guān)鍵代碼解讀:
第一步計(jì)算一階高斯偏導(dǎo)數(shù)的Ix與Iy值代碼如下:
filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION); BufferedImage xImage = filter.filter(grayImage, null); getRGB( xImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width); filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION); BufferedImage yImage = filter.filter(grayImage, null); getRGB( yImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width);
關(guān)于如何計(jì)算高斯一階與二階偏導(dǎo)數(shù)請(qǐng)看這里:
http://blog.csdn.net/jia20003/article/details/16369143
http://blog.csdn.net/jia20003/article/details/7664777
第三步:分別對(duì)第二步計(jì)算出來的三個(gè)值,單獨(dú)進(jìn)行高斯
模糊計(jì)算,代碼如下:
private void calculateGaussianBlur(int width, int height) { int index = 0; int radius = (int)window_radius; double[][] gw = get2DKernalData(radius, sigma); double sumxx = 0, sumyy = 0, sumxy = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix whm = harrisMatrixList.get(index2); sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient()); sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient()); sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy()); } } index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); hm.setXGradient(sumxx); hm.setYGradient(sumyy); hm.setIxIy(sumxy); // clean up for next loop sumxx = 0; sumyy = 0; sumxy = 0; } } }
第六步:非最大信號(hào)壓制(non-max value suppression)
這個(gè)在邊源檢測(cè)中是為了得到一個(gè)像素寬的邊緣,在這里則
是為了得到準(zhǔn)確的一個(gè)角點(diǎn)像素,去掉非角點(diǎn)值。代碼如下:
/*** * we still use the 3*3 windows to complete the non-max response value suppression */ private void nonMaxValueSuppression(int width, int height) { int index = 0; int radius = (int)window_radius; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double maxR = hm.getR(); boolean isMaxR = true; for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix hmr = harrisMatrixList.get(index2); if(hmr.getR() > maxR) { isMaxR = false; } } } if(isMaxR) { hm.setMax(maxR); } } } }
運(yùn)行效果:
程序完整源代碼:
package com.gloomyfish.image.harris.corner; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; import com.gloomyfish.filter.study.GrayFilter; public class HarrisCornerDetector extends GrayFilter { private GaussianDerivativeFilter filter; private List<HarrisMatrix> harrisMatrixList; private double lambda = 0.04; // scope : 0.04 ~ 0.06 // i hard code the window size just keep it' size is same as // first order derivation Gaussian window size private double sigma = 1; // always private double window_radius = 1; // always public HarrisCornerDetector() { filter = new GaussianDerivativeFilter(); harrisMatrixList = new ArrayList<HarrisMatrix>(); } @Override public BufferedImage filter(BufferedImage src, BufferedImage dest) { int width = src.getWidth(); int height = src.getHeight(); initSettings(height, width); if ( dest == null ) dest = createCompatibleDestImage( src, null ); BufferedImage grayImage = super.filter(src, null); int[] inPixels = new int[width*height]; // first step - Gaussian first-order Derivatives (3 × 3) - X - gradient, (3 × 3) - Y - gradient filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION); BufferedImage xImage = filter.filter(grayImage, null); getRGB( xImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width); filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION); BufferedImage yImage = filter.filter(grayImage, null); getRGB( yImage, 0, 0, width, height, inPixels ); extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width); // second step - calculate the Ix^2, Iy^2 and Ix^Iy for(HarrisMatrix hm : harrisMatrixList) { double Ix = hm.getXGradient(); double Iy = hm.getYGradient(); hm.setIxIy(Ix * Iy); hm.setXGradient(Ix*Ix); hm.setYGradient(Iy*Iy); } // 基于高斯方法,中心點(diǎn)化窗口計(jì)算一階導(dǎo)數(shù)和,關(guān)鍵一步 SumIx2, SumIy2 and SumIxIy, 高斯模糊 calculateGaussianBlur(width, height); // 求取Harris Matrix 特征值 // 計(jì)算角度相應(yīng)值R R= Det(H) - lambda * (Trace(H))^2 harrisResponse(width, height); // based on R, compute non-max suppression nonMaxValueSuppression(width, height); // match result to original image and highlight the key points int[] outPixels = matchToImage(width, height, src); // return result image setRGB( dest, 0, 0, width, height, outPixels ); return dest; } private int[] matchToImage(int width, int height, BufferedImage src) { int[] inPixels = new int[width*height]; int[] outPixels = new int[width*height]; getRGB( src, 0, 0, width, height, inPixels ); int index = 0; for(int row=0; row<height; row++) { int ta = 0, tr = 0, tg = 0, tb = 0; for(int col=0; col<width; col++) { index = row * width + col; ta = (inPixels[index] >> 24) & 0xff; tr = (inPixels[index] >> 16) & 0xff; tg = (inPixels[index] >> 8) & 0xff; tb = inPixels[index] & 0xff; HarrisMatrix hm = harrisMatrixList.get(index); if(hm.getMax() > 0) { tr = 0; tg = 255; // make it as green for corner key pointers tb = 0; outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb; } else { outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb; } } } return outPixels; } /*** * we still use the 3*3 windows to complete the non-max response value suppression */ private void nonMaxValueSuppression(int width, int height) { int index = 0; int radius = (int)window_radius; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double maxR = hm.getR(); boolean isMaxR = true; for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix hmr = harrisMatrixList.get(index2); if(hmr.getR() > maxR) { isMaxR = false; } } } if(isMaxR) { hm.setMax(maxR); } } } } /*** * 計(jì)算兩個(gè)特征值,然后得到R,公式如下,可以自己推導(dǎo),關(guān)于怎么計(jì)算矩陣特征值,請(qǐng)看這里: * http://www.sosmath.com/matrix/eigen1/eigen1.html * * A = Sxx; * B = Syy; * C = Sxy*Sxy*4; * lambda = 0.04; * H = (A*B - C) - lambda*(A+B)^2; * * @param width * @param height */ private void harrisResponse(int width, int height) { int index = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); double c = hm.getIxIy() * hm.getIxIy(); double ab = hm.getXGradient() * hm.getYGradient(); double aplusb = hm.getXGradient() + hm.getYGradient(); double response = (ab -c) - lambda * Math.pow(aplusb, 2); hm.setR(response); } } } private void calculateGaussianBlur(int width, int height) { int index = 0; int radius = (int)window_radius; double[][] gw = get2DKernalData(radius, sigma); double sumxx = 0, sumyy = 0, sumxy = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { for(int subrow =-radius; subrow<=radius; subrow++) { for(int subcol=-radius; subcol<=radius; subcol++) { int nrow = row + subrow; int ncol = col + subcol; if(nrow >= height || nrow < 0) { nrow = 0; } if(ncol >= width || ncol < 0) { ncol = 0; } int index2 = nrow * width + ncol; HarrisMatrix whm = harrisMatrixList.get(index2); sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient()); sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient()); sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy()); } } index = row * width + col; HarrisMatrix hm = harrisMatrixList.get(index); hm.setXGradient(sumxx); hm.setYGradient(sumyy); hm.setIxIy(sumxy); // clean up for next loop sumxx = 0; sumyy = 0; sumxy = 0; } } } public double[][] get2DKernalData(int n, double sigma) { int size = 2*n +1; double sigma22 = 2*sigma*sigma; double sigma22PI = Math.PI * sigma22; double[][] kernalData = new double[size][size]; int row = 0; for(int i=-n; i<=n; i++) { int column = 0; for(int j=-n; j<=n; j++) { double xDistance = i*i; double yDistance = j*j; kernalData[row][column] = Math.exp(-(xDistance + yDistance)/sigma22)/sigma22PI; column++; } row++; } // for(int i=0; i<size; i++) { // for(int j=0; j<size; j++) { // System.out.print("\t" + kernalData[i][j]); // } // System.out.println(); // System.out.println("\t ---------------------------"); // } return kernalData; } private void extractPixelData(int[] pixels, int type, int height, int width) { int index = 0; for(int row=0; row<height; row++) { int ta = 0, tr = 0, tg = 0, tb = 0; for(int col=0; col<width; col++) { index = row * width + col; ta = (pixels[index] >> 24) & 0xff; tr = (pixels[index] >> 16) & 0xff; tg = (pixels[index] >> 8) & 0xff; tb = pixels[index] & 0xff; HarrisMatrix matrix = harrisMatrixList.get(index); if(type == GaussianDerivativeFilter.X_DIRECTION) { matrix.setXGradient(tr); } if(type == GaussianDerivativeFilter.Y_DIRECTION) { matrix.setYGradient(tr); } } } } private void initSettings(int height, int width) { int index = 0; for(int row=0; row<height; row++) { for(int col=0; col<width; col++) { index = row * width + col; HarrisMatrix matrix = new HarrisMatrix(); harrisMatrixList.add(index, matrix); } } } }
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03