
想要做好智能大數(shù)據(jù)分析需要做好哪些工作
目前,大數(shù)據(jù)分析是一個(gè)非常熱門(mén)的行業(yè),一夜間,似乎企業(yè)的數(shù)據(jù)已經(jīng)價(jià)值連城。企業(yè)都在開(kāi)始嘗試?yán)么髷?shù)據(jù)來(lái)增強(qiáng)自己的企業(yè)業(yè)務(wù)競(jìng)爭(zhēng)力,但是對(duì)于大數(shù)據(jù)分析行業(yè)來(lái)說(shuō),仍然處于快速發(fā)展的初期,這是一個(gè)快速發(fā)展的領(lǐng)域,每時(shí)每刻的都在產(chǎn)生新的變化。下面讓我們來(lái)看一下大數(shù)據(jù)分析需要做到哪些工作。
預(yù)測(cè)性分析能力
數(shù)據(jù)挖掘的越多可以讓分析員更好的理解數(shù)據(jù),而預(yù)測(cè)性分析可以讓分析員據(jù)可視化分析和數(shù)據(jù)挖掘的結(jié)果做出一些預(yù)測(cè)性的判斷,并幫助客戶提出一些標(biāo)準(zhǔn)化建議。
數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理
數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理是一些管理方面的最佳實(shí)踐。通過(guò)標(biāo)準(zhǔn)化的流程和工具對(duì)數(shù)據(jù)進(jìn)行處理可以保證一個(gè)預(yù)先定義好的高質(zhì)量的分析結(jié)果。
可視化分析
不管是對(duì)數(shù)據(jù)分析專(zhuān)家還是普通用戶,數(shù)據(jù)可視化是數(shù)據(jù)分析工具最基本的要求。可視化可以直觀的展示數(shù)據(jù),讓數(shù)據(jù)自己說(shuō)話,讓客戶看到結(jié)果。
語(yǔ)義引擎
我們知道由于非結(jié)構(gòu)化數(shù)據(jù)的多樣性帶來(lái)了數(shù)據(jù)分析的新的挑戰(zhàn),我們需要一系列的工具去解析,提取,分析數(shù)據(jù)。語(yǔ)義引擎需要被設(shè)計(jì)成能夠從“文檔”中智能提取信息。
可視化是給人看的,數(shù)據(jù)挖掘就是給機(jī)器看的。集群、分割、孤立點(diǎn)分析還有其他的算法讓我們深入數(shù)據(jù)內(nèi)部,挖掘價(jià)值。這些算法不僅要處理大數(shù)據(jù)的量,也要處理大數(shù)據(jù)的速度。
大數(shù)據(jù)處理
大數(shù)據(jù)處理數(shù)據(jù)時(shí)代理念的三大轉(zhuǎn)變:要全面信息的覆蓋,拒絕抽樣數(shù)據(jù),不要效率只要絕對(duì)精確。要相關(guān)不要因果。具體的大數(shù)據(jù)處理方法其實(shí)有很多,但是根據(jù)長(zhǎng)時(shí)間的實(shí)踐,
大數(shù)據(jù)處理流程,可以概括為四步,分別是采集、導(dǎo)入和預(yù)處理、統(tǒng)計(jì)和分析。
數(shù)據(jù)采集
大數(shù)據(jù)的采集是指利用多個(gè)數(shù)據(jù)庫(kù)來(lái)接收發(fā)自客戶端的數(shù)據(jù),并且用戶可以通過(guò)這些數(shù)據(jù)庫(kù)來(lái)進(jìn)行簡(jiǎn)單的查詢和處理工作。在大數(shù)據(jù)的采集過(guò)程中,其主要特點(diǎn)和挑戰(zhàn)是并發(fā)數(shù)高,因?yàn)橥瑫r(shí)有可能會(huì)有成千上萬(wàn)的用戶來(lái)進(jìn)行訪問(wèn)和操作,比如火車(chē)票售票網(wǎng)站和淘寶,它們并發(fā)的訪問(wèn)量在峰值時(shí)達(dá)到上百萬(wàn),所以需要在采集端部署大量數(shù)據(jù)庫(kù)才能支撐。并且如何在這些數(shù)據(jù)庫(kù)之間進(jìn)行負(fù)載均衡和分片的確是需要深入的思考和設(shè)計(jì)。
數(shù)據(jù)統(tǒng)計(jì)/分析
統(tǒng)計(jì)與分析主要利用分布式數(shù)據(jù)庫(kù),或者分布式計(jì)算集群來(lái)對(duì)存儲(chǔ)于其內(nèi)的海量數(shù)據(jù)進(jìn)行普通的分析和分類(lèi)匯總等,以滿足大多數(shù)常見(jiàn)的分析需求,在這方面,一些實(shí)時(shí)性需求會(huì)用到EMC的GreenPlum、Oracle的Exadata,以及基MySQL的列式存儲(chǔ)Infobright等,而一些批處理,或者基于半結(jié)構(gòu)化數(shù)據(jù)的需求可以使用Hadoop。統(tǒng)計(jì)與分析這部分的主要特點(diǎn)和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對(duì)系統(tǒng)資源,特別是I/O會(huì)有極大的占用。
數(shù)據(jù)導(dǎo)入/預(yù)處理
雖然采集端本身會(huì)有很多數(shù)據(jù)庫(kù),但是如果要對(duì)這些海量數(shù)據(jù)進(jìn)行有效的分析,
還是應(yīng)該將這些來(lái)自前端的數(shù)據(jù)導(dǎo)入到一個(gè)集中的大型分布式數(shù)據(jù)庫(kù),或者分布式存儲(chǔ)集群,并且可以在導(dǎo)入基礎(chǔ)上做一些簡(jiǎn)單的清洗和預(yù)處理工作。也有一些用戶會(huì)在導(dǎo)入時(shí)使用來(lái)自Twitter的Storm來(lái)對(duì)數(shù)據(jù)進(jìn)行流式計(jì)算,來(lái)滿足部分業(yè)務(wù)的實(shí)時(shí)計(jì)算需求。導(dǎo)入與預(yù)處理過(guò)程的特點(diǎn)和挑戰(zhàn)主要是導(dǎo)入的數(shù)據(jù)量大,每秒鐘的導(dǎo)入量經(jīng)常會(huì)達(dá)到百兆,甚至千兆級(jí)別。
大數(shù)據(jù)分析是一個(gè)熱門(mén)行業(yè),這也是一個(gè)未來(lái)有很大發(fā)展的行業(yè),所以目前很多公司都針對(duì)大數(shù)據(jù)分析領(lǐng)域推出產(chǎn)品,但是對(duì)于企業(yè)用戶來(lái)說(shuō),在選擇的時(shí)候要注意,在選擇產(chǎn)品的時(shí)候還是要選擇知名品牌為好,中科點(diǎn)擊,浪潮,亞信等。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類(lèi)型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專(zhuān)業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專(zhuān)業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷(xiāo)案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷(xiāo)成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類(lèi)分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類(lèi)分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10