
R爬蟲之京東商城手機信息批量獲取
人手一部智能手機的移動互聯(lián)網(wǎng)時代,智能手機對很多人來說,它就像我們身上生長出來的一個器官那樣重要。如果你不能對各大品牌的『賣點』和『受眾』侃上一陣,很可能會被懷疑不是地球人。
今天我們來探索一下,如何從『京東商城』爬取各大品牌的手機信息。
1.預備知識
R爬蟲需要掌握的技能包括:
基本的網(wǎng)頁知識,如html,XML文件的解析
分析XPath
使用網(wǎng)頁開發(fā)工具
異常捕捉的處理
字符串的處理
正則表達式的使用
數(shù)據(jù)庫的基本操作
不過不要擔心,目前只需要掌握前三項技能,即可開始練習。
前三項技能的掌握可以參考 Automated Data Collection with R 一書。正常情況下,一天之內大致即可掌握。
2.頁面分析
(待完善)
3.提取各大品牌的鏈接
#### packages we need ####
## ----------------------------------------------------------------------- ##
require(stringr)
require(XML)
require(RCurl)
library(Rwebdriver)
setwd("JDDownload")
BaseUrl<-"http://search.jd.com"
quit_session()
start_session(root = "http://localhost:4444/wd/hub/",browser = "firefox")
# post Base Url
post.url(url = BaseUrl)
SearchField<-element_xpath_find(value = '//*[@id="keyword"]')
SearchButton<-element_xpath_find(value = '//*[@id="gwd_360buy"]/body/div[2]/form/input[3]')
#keyword for search
keywords<-'手機'
element_click(SearchField)
keys(keywords)
element_click(SearchButton)
Sys.sleep(1)
#test
get.url()
pageSource<-page_source()
parsedSourcePage<-htmlParse(pageSource, encoding = 'UTF-8')
## Download Search Results
fname <- paste0(keywords, " SearchPage 1.html")
writeLines(pageSource, fname)
#get all the brand url
Brand<-'//*[@id="J_selector"]/div[1]/div/div[2]/div[3]/ul/li/a/@href'
BrandLinks<-xpathSApply(doc = parsedSourcePage, path = Brand)
View(data.frame(BrandLinks))
BrandLinks<-sapply(BrandLinks,function(x){
paste0(BaseUrl,"/",x)
})
save(BrandLinks,file = 'BrandLinks.rda')
4.訪問每個品牌的頁面,抓取每個品牌下的商品鏈接
##############Function 1 #################################3##
### 對各品牌的手機頁面進行抓取 ########3#
getBrandPage<-function(BrandUrl,foreDownload = T){
#獲取某品牌搜索頁面
post.url(BrandUrl)
Brand_pageSource<-page_source()
#parse
parsedSourcePage<-htmlParse(Brand_pageSource, encoding = 'UTF-8')
#get brand name
BrandNamePath<-'//*[@id="J_crumbsBar"]/div[2]/div/a/em'
BrandName<-xpathSApply(doc = parsedSourcePage, path = BrandNamePath, fun = xmlValue)
#Save the page
BrandPageName<-paste0(BrandName,'_PageSource.html')
#Create a file
if(!file.exists(BrandName)) dir.create(BrandName)
# save
writeLines(text = Brand_pageSource, con = paste0(BrandName,'/',BrandPageName))
# get the product page url
#path
Brand_AllProductPath<-'//*[@id="J_goodsList"]/ul/li/div/div[4]/a/@href'
#url
Brand_AllProductLinks<-xpathSApply(doc = parsedSourcePage, path = Brand_AllProductPath)
# #remove some false url
# FalseLink<-grep(x = Brand_AllProductLinks,pattern = 'https',fixed = TRUE)
# Brand_AllProductLinks<-Brand_AllProductLinks[-FalseLink]
# add a head
Brand_AllProductLinks<-str_c('http:',Brand_AllProductLinks)
#save and return the url
save(Brand_AllProductLinks,file = paste0(BrandName,'_AllProductLinks.rda'))
return(Brand_AllProductLinks)
}
# test
BrandUrl<-BrandLinks[1]
getBrandPage(BrandUrl)
#get all the links
Brand_ProductLink<-list()
for(i in 1:length(BrandLinks)){
Sys.sleep(10)
Brand_ProductLink[[i]]<-getBrandPage(BrandUrl = BrandLinks[i])
}
#clean the links
All_ProductLink<-lapply(Brand_ProductLink,function(x){
TrueLink<-grep(x = x,pattern = 'http://item.jd.com/',fixed = TRUE,value = FALSE)
return(x[TrueLink])
})
# save the links
save(All_ProductLink,file = 'All_ProductLink.rda')
5.訪問每個商品頁面,提取有用信息
我們初步提取如下指標:標題(Title),賣點(KeyCount),價格(Price),評論數(shù)(commentCount),尺寸(Size),后置攝像頭像素(BackBit),后置攝像頭像素(ForwardBit),核數(shù)(Core),分辨率(Resolution),品牌(Brand),上架時間(onSaleTime).
#################################################
######## Function2 :訪問每個商品頁面,提取有用信息 ########
Product<-function(ProductLink){
post.url(ProductLink)
Sys.sleep(4)
# get the page
Product_pageSource<-page_source()
#parse
Parsed_product_Page<-htmlParse(Product_pageSource, encoding = 'UTF-8')
# get title,,key count,price,CommentCount and so on
#PATH
TitlePath<-'//*[@id="name"]/h1'
KeyCountPath<-'//*[@id="p-ad"]'
PricePath<-'//*[@id="jd-price"]'
commentCountPath<-'//*[@id="comment-count"]/a'
SizePath<-'//*[@id="parameter1"]/li[1]/div/p[1]'
BackBitPath<-'//*[@id="parameter1"]/li[2]/div/p[1]'
ForwardBitPath<-'//*[@id="parameter1"]/li[2]/div/p[2]'
CorePath<-'//*[@id="parameter1"]/li[3]/div/p[1]'
NamePath<-'//*[@id="parameter2"]/li[1]'
CodePath<-'//*[@id="parameter2"]/li[2]'
BrandPath<-'//*[@id="parameter2"]/li[3]'
onSaleTimePath<-'//*[@id="parameter2"]/li[4]'
ResolutionPath<-'//*[@id="parameter1"]/li[1]/div/p[2]'
Title<-xpathSApply(doc = Parsed_product_Page,path = TitlePath,xmlValue)
KeyCount<-xpathSApply(doc = Parsed_product_Page,path = KeyCountPath,xmlValue)
Price<-xpathSApply(doc = Parsed_product_Page,path = PricePath,xmlValue)
commentCount<-xpathSApply(doc = Parsed_product_Page,path = commentCountPath,xmlValue)
Size<-xpathSApply(doc = Parsed_product_Page,path = SizePath,xmlValue)
BackBit<-xpathSApply(doc = Parsed_product_Page,path = BackBitPath,xmlValue)
ForwardBit<-xpathSApply(doc = Parsed_product_Page,path = ForwardBitPath,xmlValue)
Core<-xpathSApply(doc = Parsed_product_Page,path = CorePath,xmlValue)
Name<-xpathSApply(doc = Parsed_product_Page,path = NamePath,xmlValue)
Code<-xpathSApply(doc = Parsed_product_Page,path = CodePath,xmlValue)
Resolution<-xpathSApply(doc = Parsed_product_Page,path = ResolutionPath,xmlValue)
Brand<-xpathSApply(doc = Parsed_product_Page,path = BrandPath,xmlValue)
onSaleTime<-xpathSApply(doc = Parsed_product_Page,path = onSaleTimePath,xmlValue)
# 整理成data frame
mydata<-data.frame(Title = Title,KeyCount = KeyCount, Price = Price,
commentCount = commentCount, Size = Size, BackBit = BackBit,
ForwardBit = ForwardBit, Core = Core, Name = Name,Code = Code,
Resolution = Resolution,
Brand = Brand, onSaleTime = onSaleTime)
#save the page
FileName<-paste0('Product/',Brand,Code,'_pageSource.html')
writeLines(text = Product_pageSource,con = FileName)
#return the data
return(mydata)
}
# test
quit_session()
start_session(root = "http://localhost:4444/wd/hub/",browser = "firefox")
load(file = 'All_ProductLink.rda')
ProductLink1<-All_ProductLink[[40]][1]
testData<-Product(ProductLink = ProductLink1)
#定義tryCatch
mySpider<-function(ProductLink){
out<-tryCatch(
{
message('This is the try part:')
Product(ProductLink = ProductLink)
},
error=function(e){
message(e)
return(NA)
},
finally = {
message("The end!")
}
)
return(out)
}
## loop
# get all data
ProductInformation<-list()
k <-0
for(i in 1:length(All_ProductLink)){
for(j in 1:length(All_ProductLink[[i]])){
k<-k+1
ProductInformation[[k]]<-mySpider(ProductLink = All_ProductLink[[i]][j])
}
}
# save my data
MobilePhoneInformation<-do.call(rbind,ProductInformation)
View(MobilePhoneInformation)
save(MobilePhoneInformation,file = 'MobilePhoneInformation.rda')
nrow(na.omit(MobilePhoneInformation))
View(MobilePhoneInformation)
最終,獲得800多行的信息,除去缺失值,剩下600多行數(shù)據(jù),還不賴。 最后的數(shù)據(jù)可以在這里獲得。
不過,數(shù)據(jù)還需要進一步清洗方能進行分析。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關鍵? 在循環(huán)神經(jīng)網(wǎng)絡(RNN)家族中,長短期記憶網(wǎng)絡(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務的價值轉化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數(shù)據(jù)查詢到趨勢預判? ? 在數(shù)據(jù)驅動決策的時代,預測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內權威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網(wǎng)絡(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調研數(shù)據(jù)中的深度應用? 市場調研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉日期:解鎖數(shù)據(jù)處理的關鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎 ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03