
8種常被忽視的SQL錯誤用法
1. LIMIT 語句
分頁查詢是最常用的場景之一,但也通常也是最容易出問題的地方。比如對于下面簡單的語句,一般 DBA 想到的辦法是在 type, name, create_time 字段上加組合索引。這樣條件排序都能有效的利用到索引,性能迅速提升。
SELECT *
FROM operation
WHERE type = 'SQLStats'
AND name = 'SlowLog'
ORDER BY create_time
LIMIT 1000, 10;
好吧,可能90%以上的 DBA 解決該問題就到此為止。但當 LIMIT 子句變成 “LIMIT 1000000,10” 時,程序員仍然會抱怨:我只取10條記錄為什么還是慢?
要知道數(shù)據(jù)庫也并不知道第1000000條記錄從什么地方開始,即使有索引也需要從頭計算一次。出現(xiàn)這種性能問題,多數(shù)情形下是程序員偷懶了。在前端數(shù)據(jù)瀏覽翻頁,或者大數(shù)據(jù)分批導出等場景下,是可以將上一頁的最大值當成參數(shù)作為查詢條件的。SQL 重新設計如下:
SELECT *
FROM operation
WHERE type = 'SQLStats'
AND name = 'SlowLog'
AND create_time > '2017-03-16 14:00:00'
ORDER BY create_time limit 10;
在新設計下查詢時間基本固定,不會隨著數(shù)據(jù)量的增長而發(fā)生變化。
2. 隱式轉換
SQL語句中查詢變量和字段定義類型不匹配是另一個常見的錯誤。比如下面的語句:
mysql> explain extended SELECT *
> FROM my_balance b
> WHERE b.bpn = 14000000123
> AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'
其中字段 bpn 的定義為 varchar(20),MySQL 的策略是將字符串轉換為數(shù)字之后再比較。函數(shù)作用于表字段,索引失效。
上述情況可能是應用程序框架自動填入的參數(shù),而不是程序員的原意?,F(xiàn)在應用框架很多很繁雜,使用方便的同時也小心它可能給自己挖坑。
3. 關聯(lián)更新、刪除
雖然 MySQL5.6 引入了物化特性,但需要特別注意它目前僅僅針對查詢語句的優(yōu)化。對于更新或刪除需要手工重寫成 JOIN。
比如下面 UPDATE 語句,MySQL 實際執(zhí)行的是循環(huán)/嵌套子查詢(DEPENDENT SUBQUERY),其執(zhí)行時間可想而知。
UPDATE operation o
SET status = 'applying'
WHERE o.id IN (SELECT id
FROM (SELECT o.id,
o.status
FROM operation o
WHERE o.group = 123
AND o.status NOT IN ( 'done' )
ORDER BY o.parent,
o.id
LIMIT 1) t);
執(zhí)行計劃:
重寫為 JOIN 之后,子查詢的選擇模式從 DEPENDENT SUBQUERY 變成 DERIVED,執(zhí)行速度大大加快,從7秒降低到2毫秒。
UPDATE operation o
JOIN (SELECT o.id,
o.status
FROM operation o
WHERE o.group = 123
AND o.status NOT IN ( 'done' )
ORDER BY o.parent,
o.id
LIMIT 1) t
ON o.id = t.id
SET status = 'applying'
執(zhí)行計劃簡化為:
4. 混合排序
MySQL 不能利用索引進行混合排序。但在某些場景,還是有機會使用特殊方法提升性能的。
SELECT *
FROM my_order o
INNER JOIN my_appraise a ON a.orderid = o.id
ORDER BY a.is_reply ASC,
a.appraise_time DESC
LIMIT 0, 20
執(zhí)行計劃顯示為全表掃描:
由于 is_reply 只有0和1兩種狀態(tài),我們按照下面的方法重寫后,執(zhí)行時間從1.58秒降低到2毫秒。
SELECT *
FROM ((SELECT *
FROM my_order o
INNER JOIN my_appraise a
ON a.orderid = o.id
AND is_reply = 0
ORDER BY appraise_time DESC
LIMIT 0, 20)
UNION ALL
(SELECT *
FROM my_order o
INNER JOIN my_appraise a
ON a.orderid = o.id
AND is_reply = 1
ORDER BY appraise_time DESC
LIMIT 0, 20)) t
ORDER BY is_reply ASC,
appraisetime DESC
LIMIT 20;
5. EXISTS語句
MySQL 對待 EXISTS 子句時,仍然采用嵌套子查詢的執(zhí)行方式。如下面的 SQL 語句:
SELECT *
FROM my_neighbor n
LEFT JOIN my_neighbor_apply sra
ON n.id = sra.neighbor_id
AND sra.user_id = 'xxx'
WHERE n.topic_status < 4
AND EXISTS(SELECT 1
FROM message_info m
WHERE n.id = m.neighbor_id
AND m.inuser = 'xxx')
AND n.topic_type <> 5
執(zhí)行計劃為:
去掉 exists 更改為 join,能夠避免嵌套子查詢,將執(zhí)行時間從1.93秒降低為1毫秒。
SELECT *
FROM my_neighbor n
INNER JOIN message_info m
ON n.id = m.neighbor_id
AND m.inuser = 'xxx'
LEFT JOIN my_neighbor_apply sra
ON n.id = sra.neighbor_id
AND sra.user_id = 'xxx'
WHERE n.topic_status < 4
AND n.topic_type <> 5
新的執(zhí)行計劃:
6. 條件下推
外部查詢條件不能夠下推到復雜的視圖或子查詢的情況有:
聚合子查詢;
含有 LIMIT 的子查詢;
UNION 或 UNION ALL 子查詢;
輸出字段中的子查詢;
如下面的語句,從執(zhí)行計劃可以看出其條件作用于聚合子查詢之后:
SELECT *
FROM (SELECT target,
Count(*)
FROM operation
GROUP BY target) t
WHERE target = 'rm-xxxx'
確定從語義上查詢條件可以直接下推后,重寫如下:
SELECT target,
Count(*)
FROM operation
WHERE target = 'rm-xxxx'
GROUP BY target
執(zhí)行計劃變?yōu)椋?
7. 提前縮小范圍
先上初始 SQL 語句:
SELECT *
FROM my_order o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
該SQL語句原意是:先做一系列的左連接,然后排序取前15條記錄。從執(zhí)行計劃也可以看出,最后一步估算排序記錄數(shù)為90萬,時間消耗為12秒。
由于最后 WHERE 條件以及排序均針對最左主表,因此可以先對 my_order 排序提前縮小數(shù)據(jù)量再做左連接。SQL 重寫后如下,執(zhí)行時間縮小為1毫秒左右。
SELECT *
FROM (
SELECT *
FROM my_order o
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
) o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
ORDER BY o.selltime DESC
limit 0, 15
再檢查執(zhí)行計劃:子查詢物化后(select_type=DERIVED)參與 JOIN。雖然估算行掃描仍然為90萬,但是利用了索引以及 LIMIT 子句后,實際執(zhí)行時間變得很小。
8. 中間結果集下推
再來看下面這個已經初步優(yōu)化過的例子(左連接中的主表優(yōu)先作用查詢條件):
SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
那么該語句還存在其它問題嗎?不難看出子查詢 c 是全表聚合查詢,在表數(shù)量特別大的情況下會導致整個語句的性能下降。
其實對于子查詢 c,左連接最后結果集只關心能和主表 resourceid 能匹配的數(shù)據(jù)。因此我們可以重寫語句如下,執(zhí)行時間從原來的2秒下降到2毫秒。
SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
但是子查詢 a 在我們的SQL語句中出現(xiàn)了多次。這種寫法不僅存在額外的開銷,還使得整個語句顯的繁雜。使用 WITH 語句再次重寫:
WITH a AS
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20)
SELECT a.*,
c.allocated
FROM a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
總結
數(shù)據(jù)庫編譯器產生執(zhí)行計劃,決定著SQL的實際執(zhí)行方式。但是編譯器只是盡力服務,所有數(shù)據(jù)庫的編譯器都不是盡善盡美的。
上述提到的多數(shù)場景,在其它數(shù)據(jù)庫中也存在性能問題。了解數(shù)據(jù)庫編譯器的特性,才能避規(guī)其短處,寫出高性能的SQL語句。
程序員在設計數(shù)據(jù)模型以及編寫SQL語句時,要把算法的思想或意識帶進來。
編寫復雜SQL語句要養(yǎng)成使用 WITH 語句的習慣。簡潔且思路清晰的SQL語句也能減小數(shù)據(jù)庫的負擔 。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關鍵? 在循環(huán)神經網絡(RNN)家族中,長短期記憶網絡(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務的價值轉化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數(shù)據(jù)查詢到趨勢預判? ? 在數(shù)據(jù)驅動決策的時代,預測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內權威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網絡(LSTM)作為循環(huán)神經網絡(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調研數(shù)據(jù)中的深度應用? 市場調研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉日期:解鎖數(shù)據(jù)處理的關鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎 ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03