
R語言利器之ddply和aggregate
ddply和aggregate是兩個用來整合數(shù)據的功能強大的函數(shù)。
aggregate(x, ...)
關于aggregate()函數(shù)的使用在《R語言實戰(zhàn)》中P105有簡單描述,這里重新說一下。此函數(shù)主要有一下幾種用法:
## Default S3 method:
aggregate(x, ...)
## S3 method for class 'data.frame'
aggregate(x, by, FUN, ..., simplify = TRUE, drop = TRUE)
## S3 method for class 'formula'
aggregate(formula, data, FUN, ...,subset, na.action = na.omit)
## S3 method for class 'ts'
aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1,ts.eps = getOption("ts.eps"), ...)
例:
attach(mtcars)
aggdata <-aggregate(mtcars, by=list(cyl,gear), FUN=mean, na.rm=TRUE)
aggdata
Group.1 Group.2 mpg cyl disp hp drat wt qsec vs am gear carb
1 4 3 21.500 4 120.1000 97.0000 3.700000 2.465000 20.0100 1.0 0.00 3 1.000000
2 6 3 19.750 6 241.5000 107.5000 2.920000 3.337500 19.8300 1.0 0.00 3 1.000000
3 8 3 15.050 8 357.6167 194.1667 3.120833 4.104083 17.1425 0.0 0.00 3 3.083333
4 4 4 26.925 4 102.6250 76.0000 4.110000 2.378125 19.6125 1.0 0.75 4 1.500000
5 6 4 19.750 6 163.8000 116.5000 3.910000 3.093750 17.6700 0.5 0.50 4 4.000000
6 4 5 28.200 4 107.7000 102.0000 4.100000 1.826500 16.8000 0.5 1.00 5 2.000000
7 6 5 19.700 6 145.0000 175.0000 3.620000 2.770000 15.5000 0.0 1.00 5 6.000000
8 8 5 15.400 8 326.0000 299.5000 3.880000 3.370000 14.5500 0.0 1.00 5 6.000000
得到數(shù)據框aggdata,其中的Group.1和Group.2的列名可以指定,只需第二行寫成:
1
aggdata <-aggregate(mtcars, by=list(Group.cyl=cyl, Group.gears=gear),FUN=mean, na.rm=TRUE)
即可。
注意:在使用aggregate()函數(shù)的時候, by中的變量必須在一個列表中(即使只有一個變量) 。 指定的函數(shù)FUN可為任意的內建或自編函數(shù) 。
其他的一些例子:
## Compute the averages for the variables in 'state.x77', grouped
## according to the region (Northeast, South, North Central, West) that
## each state belongs to.
aggregate(state.x77, list(Region = state.region), mean)
## Compute the averages according to region and the occurrence of more
## than 130 days of frost.
aggregate(state.x77,
list(Region = state.region,Cold = state.x77[,"Frost"] > 130),
mean)
## (Note that no state in 'South' is THAT cold.)
## example with character variables and NAs
testDF <- data.frame(v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99) )
by1 <- c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12)
by2 <- c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)
aggregate(x = testDF, by = list(by1, by2), FUN = "mean")
# and if you want to treat NAs as a group
fby1 <- factor(by1, exclude = "")
fby2 <- factor(by2, exclude = "")
aggregate(x = testDF, by = list(fby1, fby2), FUN = "mean")
## Formulas, one ~ one, one ~ many, many ~ one, and many ~ many:
aggregate(weight ~ feed, data = chickwts, mean)
aggregate(breaks ~ wool + tension, data = warpbreaks, mean)
aggregate(cbind(Ozone, Temp) ~ Month, data = airquality, mean)
aggregate(cbind(ncases, ncontrols) ~ alcgp + tobgp, data = esoph, sum)
## Dot notation:
aggregate(. ~ Species, data = iris, mean)
aggregate(len ~ ., data = ToothGrowth, mean)
## Often followed by xtabs():
ag <- aggregate(len ~ ., data = ToothGrowth, mean)
xtabs(len ~ ., data = ag)
## Compute the average annual approval ratings for American presidents.
aggregate(presidents, nfrequency = 1, FUN = mean)
## Give the summer less weight.
aggregate(presidents, nfrequency = 1,
FUN = weighted.mean, w = c(1, 1, 0.5, 1))
ddplycda數(shù)據分析師培訓
下面是ddply函數(shù)的一般用法:
# Summarize a dataset by two variables
dfx <- data.frame(
group = c(rep('A', 8), rep('B', 15), rep('C', 6)),
sex = sample(c("M", "F"), size = 29, replace = TRUE),
age = runif(n = 29, min = 18, max = 54)
)
head(dfx)
group sex age
1 A M 22.44750
2 A M 52.92616
3 A F 30.00443
4 A M 39.56907
5 A M 18.89180
6 A F 50.81139
#Note the use of the '.' function to allow
# group and sex to be used without quoting
ddply(dfx, .(group, sex), summarize,mean = round(mean(age), 2),sd = round(sd(age), 2))
group sex mean sd
1 A F 40.41 14.71
2 A M 30.35 13.17
3 B F 34.81 12.76
4 B M 34.04 13.36
5 C F 35.09 13.39
6 C M 28.53 4.57
# An example using a formula for .variables
ddply(baseball[1:100,], ~ year, nrow)
year V1
1 1871 7
2 1872 13
3 1873 13
4 1874 15
5 1875 17
6 1876 15
7 1877 17
8 1878 3
# Applying two functions; nrow and ncol
ddply(baseball, .(lg), c("nrow", "ncol"))
lg nrow ncol
1 65 22
2 AA 171 22
3 AL 10007 22
4 FL 37 22
5 NL 11378 22
6 PL 32 22
7 UA 9 22
# Calculate mean runs batted in for each year
rbi <- ddply(baseball, .(year), summarise,mean_rbi = mean(rbi, na.rm = TRUE))
head(rbi)
year mean_rbi
1 1871 22.28571
2 1872 20.53846
3 1873 30.92308
4 1874 29.00000
5 1875 31.58824
6 1876 30.13333
# Plot a line chart of the result
plot(mean_rbi ~ year, type = "l", data = rbi)
# make new variable career_year based on the
# start year for each player (id)
base2 <- ddply(baseball, .(id), mutate,career_year = year - min(year) + 1)
head(base2)
id year stint team lg g ab r h X2b X3b hr rbi sb cs bb so ibb hbp sh sf gidp career_year
1 aaronha01 1954 1 ML1 NL 122 468 58 131 27 6 13 69 2 2 28 39 NA 3 6 4 13 1
2 aaronha01 1955 1 ML1 NL 153 602 105 189 37 9 27 106 3 1 49 61 5 3 7 4 20 2
3 aaronha01 1956 1 ML1 NL 153 609 106 200 34 14 26 92 2 4 37 54 6 2 5 7 21 3
4 aaronha01 1957 1 ML1 NL 151 615 118 198 27 6 44 132 1 1 57 58 15 0 0 3 13 4
5 aaronha01 1958 1 ML1 NL 153 601 109 196 34 4 30 95 4 1 59 49 16 1 0 3 21 5
6 aaronha01 1959 1 ML1 NL 154 629 116 223 46 7 39 123 8 0 51 54 17 4 0 9 19 6
數(shù)據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
AI 浪潮下的生存與進階: CDA數(shù)據分析師—開啟新時代職業(yè)生涯的鑰匙(深度研究報告、發(fā)展指導白皮書) 發(fā)布機構:CDA數(shù)據科 ...
2025-07-13LSTM 模型輸入長度選擇技巧:提升序列建模效能的關鍵? 在循環(huán)神經網絡(RNN)家族中,長短期記憶網絡(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據分析師報考條件詳解與準備指南? ? 在數(shù)據驅動決策的時代浪潮下,CDA 數(shù)據分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據透視表中兩列相乘合計的實用指南? 在數(shù)據分析的日常工作中,數(shù)據透視表憑借其強大的數(shù)據匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據分析師:連接數(shù)據與業(yè)務的價值轉化者? ? 在大數(shù)據與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數(shù)據查詢到趨勢預判? ? 在數(shù)據驅動決策的時代,預測分析作為挖掘數(shù)據潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據查詢結束后:分析師的收尾工作與價值深化? ? 在數(shù)據分析的全流程中,“query end”(查詢結束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據分析師考試:從報考到取證的全攻略? 在數(shù)字經濟蓬勃發(fā)展的今天,數(shù)據分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據背后的時間軌跡? 在數(shù)據分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據類型:時間維度的精準切片? ? 在數(shù)據的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據分析師認證考試中,Python 作為數(shù)據處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據趨勢與突變分析的有力工具? ? ? 在數(shù)據分析的廣袤領域中,準確捕捉數(shù)據的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據分析師認證作為國內權威的數(shù)據分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網絡(LSTM)作為循環(huán)神經網絡(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調研數(shù)據中的深度應用? 市場調研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調研數(shù) ...
2025-07-07CDA數(shù)據分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據已成為企業(yè)決策、行業(yè)發(fā)展的核心驅動力,數(shù)據分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據分析師考試作為衡量數(shù)據專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉日期:解鎖數(shù)據處理的關鍵技能? 在數(shù)據處理與分析工作中,數(shù)據格式的規(guī)范性是保證后續(xù)分析準確性的基礎 ...
2025-07-04CDA 數(shù)據分析師視角:從數(shù)據迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據已成為企業(yè)決策的核心驅動力,CDA(Certifie ...
2025-07-04