
R語言從SNPedia批量提取搜索數(shù)據
SNP是單核苷酸多態(tài)性,人的基因是相似的,有些位點上存在差異,這種某個位點的核苷酸差異就做單核苷酸多態(tài)性,它影響著生物的性狀,影響著對某些疾病的易感性。SNPedia是一個SNP調査百科,它引用各種已經發(fā)布的文章,或者數(shù)據庫信息對SNP位點進行描述,共享著人類基因組變異的信息。我們可以搜索某個SNP位點來尋找與之相關的信息,也可以根據相關疾病,癥狀來尋找相關的SNP。
初次使用SNPedia
??SNPedia主頁網址為http://snpedia.com/index.php/SNPedia,比如我想查找與crouzon綜合癥相關的SNP,只需要在SNPedia中搜索crouzon syndrome,即會出現(xiàn)許多相關的SNP搜索結果
??如果這時候我想看每個SNP的相關信息,我就要每個鏈接分別點進去
??后來發(fā)現(xiàn)我們只需要提取里面的部分信息,Orientation,Stabilized,Reference,Chromosome,Position,Gene,還有clinvar表格信息,這時候我們就可以從網頁中利用RCurl包,XML包,正則表達是把所需要的內容提取出來,有效抓取有用信息。
知識準備
RCurl包和XML包
?? readHTMLTable(doc) #doc 是XML或者HTML格式文本,可以是文件名,也可以是剛剛parse的html對象,該函數(shù)返回XML或HTML中的表格
正則表達式
這里闡述基本的正則表達式使用
??[ ]中括號,匹配中括號里面的任意字符,例如[a]匹配"a"
??[a-z]表示匹配a到z任意字母,[A-Z]匹配大寫A到Z,[0-9]匹配0-9任意數(shù)字
??[ ]*中括號加*表示匹配任意次,[ ]+表示匹配至少一次,例如[a-zA-z,;: ]+表示匹配小寫和大寫字母,;:和空格至少一次
??[ a|b ] 匹配a或者b
??直接輸入字符,實現(xiàn)精確定位。比如"apple[a-zA-z,;: ]+",定位到apple開頭的后面匹配小寫和大寫字母,;:和空格至少一次的內容
??[\u4E00-\u9FA5]匹配漢字
R語言gregexpr函數(shù)
??使用方法:gregexpr(pattern,istring, fixed = FALSE) #pattern就是要匹配正則表達是,istring是待匹配的字符串矢量,比如c("abc","cdf"),fixed, 如果設置為true,默認pattern是真正的字符串,不會作為其它使用,相當于轉義, 函數(shù)返回列表,包括每個字符串的匹配長度和是否匹配)
實例
?這里直接上代碼,代碼里面有著詳細解釋,許多函數(shù)以后可以直接復制使用,或者放進一個自己做的R包
#!/usr/bin/env Rscript
download <- function(strURL){
#輸入網址返回html樹格式文件
#strURL:網頁鏈接地址 return: html樹文件
h <- basicTextGatherer()# 查看服務器返回的頭信息
txt <- getURL(strURL, headerfunction = h$update,.encoding="gbk") ## 字符串形式
htmlParse(txt,asText=T,encoding="gbk") #選擇gbk進行網頁的解析
}
getinf <- function(strURL){
#主要提取網頁信息函數(shù)
#strURL:網頁鏈接網址 return:包括所要的所有信息的data.frame
doc<- download(strURL)
#寫如標題
info<- data.frame("Title"=strsplit(xmlValue(getNodeSet(doc,'//title')[[1]])," -")[[1]][1]) #"rs... - SNPedia"進行split
#寫入"Geno Mag Summary "table
GMS_table <- readHTMLTable(doc)
GMS_index <- 0
for (p in 1:6){
if (length(GMS_table[[p]])==3){
GMS_index <- p
}
}
if (GMS_index!=0){
for (i in 1:length(GMS_table[[GMS_index]])){
tmp <- ""
for (t in 1:nrow(GMS_table[[GMS_index]][i])){
if(tmp==""){tmp <-as.vector(GMS_table[[GMS_index]][i][t,1])}else{
tmp <- paste(tmp,as.vector(GMS_table[[GMS_index]][i][t,1]),sep=";")
}
}
if (i==1){info$Geno <-tmp}
else if (i==2){info$Mag <-tmp}
else if (i==3){info$Summary <- tmp
tmp <- ""
}
}
}else{
info$Geno <-" "
info$Mag <-" "
info$Summary <- " "
}
#寫入剩下table信息
mes <- getNodeSet(doc,'//td')
mes2 <- list()
for (c in mes){
d <- xmlValue(c)
if (mes==""){
mes2=d
}else{
mes2=c(mes2,d)
}
}
tmp <- greg_return_string("Make[-A-Za-z0-9_.%;\\(\\), ]+",mes2)
if (length(tmp)==2){info$"Make"=paste(strsplit(tmp[[1]]," ")[[1]][2],strsplit(tmp[[2]]," ")[[1]][2],sep=";")}else{info$"Make"=" "}
for (i in (1:length(pattlistMainTable))){
tmp <- greg_return_index(pattlistMainTable[[i]],mes2)
if (i==1 && length(tmp)==1){info$"Orientation"=strsplit(mes2[[tmp+1]],"\n")[[1]]}else if (i==1 && length(tmp)!=1){info$"Orientation"=" "}
else if (i==2 && length(tmp)==1){info$"Stabilized"=strsplit(mes2[[tmp+1]],"\n")[[1]]}else if (i==2 && length(tmp)!=1){info$"Stabilized"=" "}
else if (i==3 && length(tmp)==1){info$"Reference"=strsplit(mes2[[tmp+1]],"\n")[[1]]}else if (i==3 && length(tmp)!=1){info$"Reference"=" "}
else if (i==4 && length(tmp)==1){info$"Chromosome"=strsplit(mes2[[tmp+1]],"\n")[[1]]}else if (i==4 && length(tmp)!=1){info$"Chromosome"=" "}
else if (i==5 &&length(tmp)==1){info$"Position"=strsplit(mes2[[tmp+1]],"\n")[[1]]}else if (i==5 && length(tmp)!=1){info$"Position"=" "}
else if (i==6&&length(tmp)==1){info$"Gene"=strsplit(mes2[[tmp+1]],"\n")[[1]]}else if (i==6 && length(tmp)!=1){info$"Gene"=" "}
}
#寫入clivar
mes <- getNodeSet(doc,'//tr')
mes2 <- list()
for (c in mes){
d <- xmlValue(c)
if (mes==""){
mes2=d
}else{
mes2=c(mes2,d)
}
}
for (i in (1:length(pattlistClinvar))){
tmp <- greg_return_string(pattlistClinvar[i],mes2)
if (length(tmp)!=0){tmp <- tmp[[1]]}
if (i==1 && length(tmp)!=0){info$"Risk"=strsplit(tmp,"\n")[[1]][3]}else if (i==1 && length(tmp)==0){info$"Risk"=" "}
else if (i==2 && length(tmp)!=0){info$"Alt"=strsplit(tmp,"\n")[[1]][3]}else if (i==2 && length(tmp)==0){info$"Alt"=" "}
else if (i==3 && length(tmp)!=0){info$"ReferenceBase"=strsplit(tmp,"\n")[[1]][3]}else if (i==3&& length(tmp)==0){info$"ReferenceBase"=" "}
else if (i==4 && length(tmp)!=0){info$"Significance"=strsplit(tmp,"\n")[[1]][2]}else if (i==4 && length(tmp)==0){info$"Significance"=" "}
else if (i==5&& length(tmp)!=0){info$"Disease "=strsplit(tmp,"\n")[[1]][3]}else if (i==5 && length(tmp)==0){info$"Disease "=" "}
else if (i==6 && length(tmp)!=0){info$"CLNDBN"=strsplit(tmp,"\n")[[1]][3]}else if (i==6 && length(tmp)==0){info$"CLNDBN"=" "}
else if (i==7 && length(tmp)!=0){info$"Reversed"=strsplit(tmp,"\n")[[1]][3]}else if (i==7 && length(tmp)==0){info$"Reversed"=" "}
else if (i==8 && length(tmp)!=0){info$"HGVS"=strsplit(tmp,"\n")[[1]][3]}else if (i==8 && length(tmp)==0){info$"HGVS"=" "}
else if (i==9 && length(tmp)!=0){info$"CLNSRC"=strsplit(tmp,"\n")[[1]][3]}else if (i==9 && length(tmp)==0){info$"CLNSRC"=" "}
else if (i==10 && length(tmp)!=0){info$"CLNACC "=strsplit(tmp,"\n")[[1]][3]}else if (i==10 && length(tmp)==0){info$"CLNACC "=" "}
}
info
}
greg_return_string <- function(pattern,stringlist){
#greg_return_stirng 指定匹配全部字符串列表,返回匹配的字符串
#pattern:匹配模式,比如"abc[a-z]*" stringlist:字符串列表,list("abc","abcde","cdfe") return : 列表里字符串匹配結果,"abc""abcde"
findlist <- gregexpr(pattern,stringlist)
needlist <- list()
for (i in which(unlist(findlist)>0)){
preadress <- substr(stringlist[i],findlist[[i]],findlist[[i]]+attr(findlist[[i]],'match.length')-1)
needlist<- c(needlist,list(preadress))
}
return(needlist)
}
greg_return_index <- function(pattern,stringlist){
#greg_return_stirng 指定匹配全部字符串列表,返回存在匹配的字符串列表index
#pattern:匹配模式 stringlst:待匹配字符串列表 return:存在返回匹配的字符串在列表中的index
findlist <- gregexpr(pattern,stringlist)
needlist <- list()
which(unlist(findlist)>0)
}
extradress <- function(strURL){
#將strURL網頁里面我們所需要鏈接提取出來并加工
#strURL:網頁鏈接網址 return:網址列表,包括所有提取加工后的網址鏈接
pattern <- "/index.php/Rs[0-9]+"
prefix <- "http://snpedia.com"
links <- getHTMLLinks(strURL)
needlinks <- gregexpr(pattern,links)
needlinkslist <- list()
for (i in which(unlist(needlinks)>0)){
preadress <- substr(links[i],needlinks[[i]],needlinks[[i]]+attr(needlinks[[i]],'match.length')-1)
needlinkslist<- c(needlinkslist,list(preadress))
adresses <- lapply(needlinkslist,function(x)paste(prefix,x,sep=""))
}
adresses
}
greg <- function(pattern,istring){
#greg函數(shù)查看單個字符串istring,并且返回匹配的部分,不匹配返回空
gregout <- gregexpr(pattern,istring)
substr(istring,gregout[[1]],gregout[[1]]+attr(gregout[[1]],'match.length')-1)
}
library(RCurl)
library(XML)
#自定義部分
strURL <- "http://snpedia.com/index.php?title=Special%3ASearch&profile=default&fulltext=Search&search=Congenital+adrenal+hyperplasia"
output <- "ouput.txt"
message(paste("[prog]",strURL,output,sep=" "))
strURLs <- extradress(strURL)
pattlistMainTable <- list("Orientation$","Stabilized$","Reference$","Chromosome$","Position$","Gene$")
#此匹配模式列表用于返回該字符串所在index,而對應的值是index是該index+1
pattlistClinvar <- list("Risk\n\n[-A-Za-z0-9_.%;\\(\\), ]+","Alt\n\n[-A-Za-z0-9_.%;\\(\\), ]+",
"Reference\n\n[-A-Za-z0-9_.%;\\(\\) ]+","Significance \n[A-Za-z ]+","Disease \n\n[A-Za-z ]+",
"CLNDBN \n\n[-A-Za-z0-9_.% ]+","Reversed \n\n[0-9]+", "HGVS \n\n[-A-Za-z0-9_.%:> ]+","CLNSRC \n\n[-A-Za-z0-9_.% ]+","CLNACC \n\n[-A-Za-z0-9_.%, ]+")
#此匹配模式列表用于返回相應clinvar
inf <- " "
for ( strURL in strURLs){
dat <- getinf(strURL)
if (inf==" "){
inf <- dat
}else{
inf <- rbind(inf,dat)
}
}
write.table(inf, file = output, row.names = F, col.names=T,quote = F, sep="\t") # tab 分隔的文件
message("完成!")
結果可以用直接打開,也可以用excel的自文本打開,方便查看
數(shù)據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關鍵? 在循環(huán)神經網絡(RNN)家族中,長短期記憶網絡(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據分析師報考條件詳解與準備指南? ? 在數(shù)據驅動決策的時代浪潮下,CDA 數(shù)據分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據透視表中兩列相乘合計的實用指南? 在數(shù)據分析的日常工作中,數(shù)據透視表憑借其強大的數(shù)據匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據分析師:連接數(shù)據與業(yè)務的價值轉化者? ? 在大數(shù)據與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數(shù)據查詢到趨勢預判? ? 在數(shù)據驅動決策的時代,預測分析作為挖掘數(shù)據潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據查詢結束后:分析師的收尾工作與價值深化? ? 在數(shù)據分析的全流程中,“query end”(查詢結束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據分析師考試:從報考到取證的全攻略? 在數(shù)字經濟蓬勃發(fā)展的今天,數(shù)據分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據背后的時間軌跡? 在數(shù)據分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據類型:時間維度的精準切片? ? 在數(shù)據的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據分析師認證考試中,Python 作為數(shù)據處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據趨勢與突變分析的有力工具? ? ? 在數(shù)據分析的廣袤領域中,準確捕捉數(shù)據的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據分析師認證作為國內權威的數(shù)據分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網絡(LSTM)作為循環(huán)神經網絡(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調研數(shù)據中的深度應用? 市場調研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調研數(shù) ...
2025-07-07CDA數(shù)據分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據已成為企業(yè)決策、行業(yè)發(fā)展的核心驅動力,數(shù)據分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據分析師考試作為衡量數(shù)據專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉日期:解鎖數(shù)據處理的關鍵技能? 在數(shù)據處理與分析工作中,數(shù)據格式的規(guī)范性是保證后續(xù)分析準確性的基礎 ...
2025-07-04CDA 數(shù)據分析師視角:從數(shù)據迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據已成為企業(yè)決策的核心驅動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據分析師:開啟數(shù)據職業(yè)發(fā)展新征程? ? 在數(shù)據成為核心生產要素的今天,數(shù)據分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03