
R語言數(shù)據(jù)可視化—仿網(wǎng)易數(shù)獨圓環(huán)條形圖
一個案例,告訴你如何靈活的運用ggplot2來制作花樣繁多的信息圖!
雖然ggplot2的內(nèi)置圖層只有屈指可數(shù)的幾十個,可是圖表組合之后的可能性是無限的。
實際上還是萬變不離其宗,就如同使用Excel模仿復(fù)雜圖表一樣,再復(fù)雜的圖表也是有不同的元素和模塊組合起來的,只要能夠用心去拆解,都可以找到行之有效的方法。如同庖丁解牛,只要洞悉骨架和經(jīng)脈,才能隨心所欲的下刀。
setwd("F:/數(shù)據(jù)可視化/R/R語言學(xué)習(xí)筆記/可視化/ggplot2/商務(wù)圖表")
library("ggplot2")
library("tidyr")
library("dplyr")
library("grid")
library("showtext")
library('"Cairo")
library("scales")
font.add("myfont","msyhl.ttc")
mydata<-read.csv("mydata.csv",stringsAsFactors=FALSE,check.names=FALSE)
mydata$index<-1:nrow(mydata)
mydata$angle1<-1.5*seq(-1,-59)
mydata$angle2<-1.5*seq(59,1)
label<-strsplit(mydata$Country,"")
for (i in 1:length(label)){
label[[i]]<-paste0(label[[i]],collapse="\n")
}
mydata$label<-unlist(label)
mydata$label[37:59]<-gsub("\n","",mydata$label[37:59])
mynewdata<-mydata%>%gather(Class,Value,2:4)
圖形一:
mynewdata$Class<-factor(mynewdata$Class,levels=c("環(huán)保優(yōu)先","其他/未回答","經(jīng)濟(jì)優(yōu)先"),order=T)
p1<-ggplot(data=mynewdata,aes(x=index,y=Value,fill=Class))+
geom_bar(stat="identity",width=0.95)+
geom_text(aes(y=105,label=ifelse(index<=36,label,""),angle=angle1),hjust=.5,vjust=0,family="myfont")+
geom_text(aes(y=105,label=ifelse(index>36,label,""),angle=angle2),hjust=0,vjust=0.5,family="myfont")+
geom_text(aes(y=Value,label=Value,angle=angle2),position=position_stack(vjust=.9),family="myfont")+
xlim(0.5,236.5)+ylim(-120,105)+
coord_polar(theta="x")+
guides(fill=guide_legend(title=NULL))+
scale_fill_manual(values=c("#2EA7E0","#B5B5B6","#CBE510"))+
theme(
text=element_text(size=20),
line=element_blank(),
rect=element_blank(),
axis.text=element_blank(),
axis.title=element_blank(),
legend.position=c(.95,.75),
legend.key.size =unit(.8,'cm'),
)
以上可以制作出原始案例的外圍圓環(huán)圖:
mydata2<-data.frame(year=c("1998年","2004年","2009年","2014年"),經(jīng)濟(jì)優(yōu)先=c(.24,.27,.23,.28),未回答=c(.25,.21,.23,.15),環(huán)保優(yōu)先=c(.51,.52,.54,.57),smallyear=rep(.15,4),check.names = FALSE)
names(mydata2)[3]<-"其他/未回答"
mydata2$index<-1:nrow(mydata2)
mynewdata2<-mydata2%>%gather(Class,Value,2:5)
mynewdata2$Class<-factor(mynewdata2$Class,levels=c("smallyear","環(huán)保優(yōu)先","其他/未回答","經(jīng)濟(jì)優(yōu)先"),order=T)
p2<-ggplot(data=mynewdata2,aes(x=index,y=Value,fill=Class))+
geom_bar(stat="identity",width=0.99)+
geom_text(aes(y=Value,label=ifelse(mynewdata2$Class=="smallyear",levels(mynewdata2$year),""),angle=c(rep(0,12),11.25*seq(-1,-7,-2))),position=position_stack(vjust=.5),family="myfont",size=7.5)+
geom_text(aes(y=Value,label=ifelse(mynewdata2$Class!="smallyear",percent(mynewdata2$Value),"")),position=position_stack(vjust=.5),family="myfont",size=6)+
xlim(0.5,16.5)+ylim(-.5,1.25)+
coord_polar(theta="x")+
guides(fill=FALSE)+
scale_fill_manual(values=c("#EFEFEF","#2EA7E0","#B5B5B6","#CBE510"))+
theme(
line=element_blank(),
rect=element_blank(),
axis.text=element_blank(),
axis.title=element_blank(),
legend.position="none"
)
以上可以做出內(nèi)側(cè)小圓環(huán)圖:
CairoPNG(file="circletile1.png",width=2000,height=2000)
showtext.begin()
vie<-viewport(width=0.5,height=0.5,x=0.5,y=0.5)
p1;print(p2,vp=vie)
grid.text(label="六成中國人認(rèn)為\n環(huán)境比經(jīng)濟(jì)更重要",,x=.99,y=.90,gp=gpar(col="black",fontsize=60,draw=TRUE,just="right")
showtext.end()
dev.off()
合并一步,一幅完整的圖表便出爐了!
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10