
支持向量機(SVM)理論總結(jié)系列.線性可分(附帶R程序案例:用體重和心臟重量來預測一只貓的性別)
1.名詞解釋
支持向量機中的機:在機器學習領(lǐng)域,常把一些算法看做一個機器,如分類機(也叫作分類器)
2.問題描述
空間中有很多已知類別的點,現(xiàn)在想用一個面分開他們,并能對未知類別的點很好的識別類別。
3.算法思想
由問題描述可知,現(xiàn)在算法要解決兩個問題:
找到一個平面,可以很好的區(qū)分不同類別的點,即使分類器的訓練誤差小,線性可分時要求訓練誤差為0。
很好的識別未知類別樣本的類別,即多大程度上信任該分類器在未知樣本上分類的效果。
令滿足以上兩點的超平面方程為:
圖1 畫圖展示
4.公式推導
這里接著上一步,公式推導如何求w和b,下圖2所示。
圖2 公式推導
5.程序?qū)崿F(xiàn)(案例)
案例介紹:用體重和心臟重量來預測一只貓的性別。
#數(shù)據(jù)集來自MASS包的cats數(shù)據(jù)集
#下面的程序?qū)崿F(xiàn)用體重和心臟重量來預測一只貓的性別
library(e1071)
data(cats,package="MASS")
summary(cats)
inputData=data.frame(cats[, c (2,3)], Sex= as.factor(cats$Sex))
train=inputData[1:108,]#訓練集
test=inputData[109:144,]#測試集
#初步建模
x=train[,-3]
y=train[,3]
#核函數(shù)選擇高斯核函數(shù)
model1=svm(x,y,kernel='radial',gamma=if(is.vector(x)) 1 else1/ncol(x))
#計算訓練誤差,結(jié)果顯示有14個樣本類別錯誤
z=test[,-3]
zy=test[,3]
zy=as.integer(zy)
pred1=predict(model1,x)
table(pred1,y)
#優(yōu)化模型
attach(train)#將數(shù)據(jù)集train按列單獨確認為向量
type=c("C-classification","nu-classification","one-classification")
kernel=c("linear","polynomial","radial","sigmoid")
pred2=array(0,dim=c(108,3,4))
accuracy=matrix(0,3,4)
yy=as.integer(y)
for(i in 1:3)
{
for(j in 1:4)
{
pred2[,i,j]=predict(svm(x,y,type=type[i],kernel=kernel[j]),x)
if(i>2) accuracy[i,j]=sum(pred2[,i,j]!=1)
else accuracy[i,j]=sum(pred2[,i,j]!=yy)
}
}
#12種組合算法在訓練集上的誤差
wrong=matrix(0,3,4)
for(i in 1:3)
{
for(j in 1:4)
{
wrong[i,j]=mean(yy != pred2[,i,j])#錯誤率占比
}
}
#選擇訓練集上誤差最小的三種組合,計算在測試集上的誤差,三種組合在訓練集上的錯誤率分別為0.241,0.259,0.278;三種組合分別是nu-classification+radial、C-classification+linear組合和C-classification+radial組合。
pred3=array(0,dim=c(108,3,4))
for(i in 1:3)
{
for(j in 1:4)
{
pred3[,i,j]=predict(svm(x,y,type=type[i],kernel=kernel[j]),z)
if(i>2) accuracy[i,j]=sum(pred3[,i,j]!=1)
else accuracy[i,j]=sum(pred3[,i,j]!=yy)
}
}
mean(zy != pred3[,2,3])
mean(zy != pred3[,1,1])
mean(zy != pred3[,1,3])
#計算結(jié)果分別為0.417,0,0數(shù)據(jù)分析師培訓
#在測試集上錯誤率為0的兩種算法分別是C-classification+linear組合和C-classification+radial組合。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數(shù)據(jù)查詢到趨勢預判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調(diào)研數(shù)據(jù)中的深度應用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03