
sas批量刪除重復(fù)超過90%的變量
22年前的今天我的媽咪把我?guī)磉@個世界,費盡心思把我養(yǎng)到這么大,我就是4月份出生的大白羊,我的生日愿望呢,就是想有個大神在留言板塊教我一個怎么識別組合變量更好解釋因變量的方法,譬如我怎么知道年齡和婚姻兩個變量在一起的效果比單個的效果還要好,但是年齡和性別組合效果并沒有那么好。跪求大神實現(xiàn)我的生日愿望吧。
今天還是沒有要更新信用評分的內(nèi)容,更新的內(nèi)容是關(guān)于變量處理中的問題,之前的文章中有過變量處理的章節(jié),這篇文章是對那篇的補充,之前講過我會把缺失值達到70%的變量刪掉。我漏掉一個問題就是變量的重復(fù)值達到90%也應(yīng)該刪掉,譬如一個變量有5中情況:ABCDE,但是A的情況的占比就達到90%的時候,除非這個變量剩下的10%全部都是逾期的,不然這樣的變量是沒有意義,所以今天分享的代碼就是批量找出這些變量并在原數(shù)據(jù)集中刪掉。這次的代碼也是陳先生提供的。我在陳先生代碼的基礎(chǔ)上做了一些改動并調(diào)試了。
話不多說,上代碼:
%macrovar_namelist(data=,tarvar=,dsor=);
%letlib=%upcase(%scan(&data.,1,'.'));
%letdname=%upcase(%scan(&data.,2,'.'));
%globalvar_list var_num;
proc sql ;
create table &dsor.as
select name
from sashelp.VCOLUMN
where left(libname)="&lib."and left(memname)="&dname."and lowcase(name)^=lowcase("&tarvar.");
quit;
%mend;
%macrotest(data,tarvar,data_result,data_drop,rate);
proc datasets lib=work;
delete base;
run;
data base;
length variable$100.;
run;
%var_namelist(data=&data.,/*coltype=num,*/tarvar=&tarvar.,dsor=aa);
data _null_;
set aa;
call symput(compress("var"||left(_n_)),compress(name));
call symput(compress("n"),compress(_n_));
run;
%put&n.;
%doi=1%to&n.;
%put&&var&i.;
proc freq data=&data.(keep=&&var&i.) noprint;
tables &&var&i./out=PERCENT_&&var&i.;
/*(keep=PERCENT)*/
run;
proc sql;
select max(PERCENT) into: max_percent from
PERCENT_&&var&i.;
quit;
%if&max_percent>&rate.%then%do;
data next;
variable="&&var&i.";
run;
proc append base=base data=next force;
run;
%end;
proc datasets lib=work noprint;
delete PERCENT_&&var&i.;
run;
%end;
data base;
set base(where=(variable^=''));
run;
proc transpose data=base out=base1(drop=_name_);
id variable;
run;
/*這步是刪除單一變量超過90的重復(fù)值的缺失值的可以按照這個寫下*/
proc sql noprint;
select name into :var_list separated by' '
from sashelp.VCOLUMN
where upcase(left(libname))="WORK"and UPCASE(left(memname))="BASE1";
quit;
%PUT&var_num1.;
data &data_result.;
set &data.;
drop &var_list.;
run;
data &data_drop.;
set &data.;
keep &tarvar.&var_list.;
run;
%mend;
第一宏不用管,那是為了嵌套在第二個宏里面的。那么接下來介紹下這個宏怎么用。
test(data,tarvar,data_result,data_drop,rate);
data:填入的原數(shù)據(jù)集。
Tarvar:填入你不想要統(tǒng)計的變量。可以是你的主鍵也可以是你的因變量,隨便你。像我填入的是因變量。
data_result:結(jié)果數(shù)據(jù)集,你的結(jié)果數(shù)據(jù)想叫什么就填什么把。
Data_drop:刪掉的變量存放的數(shù)據(jù)集,給你檢查一下有沒有錯刪變量。
Rate:填入的是你覺得重復(fù)值達到多少的時候就刪掉。我建議的80-90。
下周分享的一個變量人工分段的一個代碼。這個代碼是我當(dāng)下除了最優(yōu)分段之外覺得好用的代碼,因為最優(yōu)分段需要做異常值的檢查。有時候異常值檢查不好,容易分組的分的不好。這是我個人的經(jīng)驗哈,對于變量分段我之前很崇尚自動分組,我覺得那么多的變量,我一個一個的去細看這無非浪費我的時間,但是我失敗的經(jīng)驗告訴我,模型的過程每一步的都應(yīng)該細致并且仔細,該人工的時候還是要人工,如果全部可以全自動化,那么只要自動運行代碼就可以了,誰都可以建模了。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓(xùn)練與驗證損失驟升:機器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11