
簡單易學(xué)的機(jī)器學(xué)習(xí)算法—Rosenblatt感知機(jī)
一、感知機(jī)的概念
感知機(jī)是一種二類分類的線性模型,輸入實例的特征向量,輸出為實例的類別,即+1或者-1。感知機(jī)模型是神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)的基礎(chǔ)。
假設(shè)特征為,類標(biāo)簽為
,由特征到類標(biāo)簽的映射可以表示為
這樣的函數(shù)稱為感知機(jī)。其中w和b為感知機(jī)的參數(shù),w為權(quán)重,b為偏置。為向量w與向量x之間的內(nèi)積。
為符號函數(shù):
為分隔超平面。
二、感知機(jī)模型的訓(xùn)練
1、目標(biāo)函數(shù)
為了能夠正確的對實例分類,我們的目標(biāo)是能夠求出分隔超平面,即求出參數(shù)w和b。在這里,分隔超平面存在的前提是數(shù)據(jù)集是線性可分的。
在訓(xùn)練參數(shù)和時,我們可以采用損失函數(shù),并且使得損失函數(shù)最小化。感知機(jī)的訓(xùn)練中損失函數(shù)可以采用誤分類點到分隔超平面的距離的總和。一個點被正確分類是指當(dāng)時,而原始標(biāo)簽
;類似的,當(dāng)時
,而原始標(biāo)簽
。一個點到平面之間的距離公式為
對于誤分類點,有
,因此誤分類點到分隔超平面之間的距離為
可以不考慮,則對于誤分類點集合m,感知機(jī)的損失函數(shù)為
我們的目標(biāo)使得損失函數(shù)最小化,即。我們可以使用梯度下降法求解這樣的最小化問題。(梯度下降法),在這里我們采用梯度下降法的改進(jìn)算法:隨機(jī)梯度下降法。
2、感知機(jī)的訓(xùn)練過程
隨機(jī)選取權(quán)重和偏置的初值
隨機(jī)選取初始實例
如果。
轉(zhuǎn)至2,直到訓(xùn)練集中沒有誤分類點。
三、實例
選自《統(tǒng)計學(xué)習(xí)方法》,訓(xùn)練集為:正實例點是,負(fù)實例點是
。
原始點集
MATLAB代碼
[plain] view plain copy 在CODE上查看代碼片派生到我的代碼片
%讀入數(shù)據(jù)
x=[3,3;4,3;1,1];
y=[1;1;-1];
%--初始化w和b
w = [0,0];
b = 0;
a = 1;%步長
%--選擇未能初始化的點
flag = 0;
i = 1;
while flag~=1
while i <= 3
t = y(i)*(w*x(i,:)'+b);
if t <= 0
w = w + a*y(i,:)*x(i,:);
b = b + a*y(i,:);
i = 1;%重置i
break;
else
i = i+1;
end
if i == 4
flag = 1;
end
end
end
%畫出分隔線
hold on
axis([0 5 0 5]);%axis一般用來設(shè)置axes的樣式,包括坐標(biāo)軸范圍,可讀比例等
for j = 1:3
plot(x(j,1),x(j,2),'.');
m(1,j) = (-b-w(1)*j)./(w(2));
end
j = 1:3;
plot(j,m);
分類結(jié)果
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03