
SAS—基于熵的連續(xù)變量的離散化
今天介紹下整個(gè)程序邏輯及sas代碼的詳細(xì)介紹。
首先宏 %BinContVard調(diào)用了宏%CandSplits;然后宏%CandSplits又調(diào)用宏
%BestSplit、%GValue;最后通過(guò)宏%ApplyMap應(yīng)用于數(shù)據(jù)集。
下表是%BinContVar的參數(shù)
%BinContVar(Dsin,IVVar,DVVar,MMax,Acc,DsVarMap)
參數(shù)
描述
DSin
輸入數(shù)據(jù)集
IVVar
連續(xù)自變量
DVVar
二元因變量
MMax
設(shè)定的分組數(shù)量
Acc
最小分段的百分比規(guī)模
DsVarMap
包含映射規(guī)則的輸出數(shù)據(jù)集
首先,將初始數(shù)據(jù)集等距分為10段,然后把這些段數(shù)看作名義變量,基于熵方差利用最優(yōu)二元分類(lèi)法找出最優(yōu)分群。
宏%bincontvar的主要是作用是連續(xù)變量的最優(yōu)分段,嵌套了%CandSplits,這個(gè)宏的作用是對(duì)分段后的數(shù)據(jù)集在進(jìn)行分群,并選出最優(yōu)分群;宏%CandSplits嵌套了%BestSplits和%GValue兩個(gè)宏:宏%BestSplits是找出最優(yōu)分群,宏%GValue計(jì)算熵方差。
/*連續(xù)變量的最優(yōu)分段*/
/*
1.找出連續(xù)變量的最大最小值;
2.對(duì)連續(xù)變量進(jìn)行等距分段,并把這些段數(shù)看成名義變量;
3.對(duì)2所分段數(shù)進(jìn)行最優(yōu)分群,直到所設(shè)置的分群數(shù)
*/
%macro BinContVar(DSin, IVVar, DVVar, MMax, Acc, DSVarMap);
%local VarMax VarMin;
proc sql noprint;
select min(&IVVar), max(&IVVar) into :VarMin, :VarMax from &DSin;
quit;
%local Mbins i MinBinSize;
%let Mbins=%sysfunc(int(%sysevalf(1.0/&Acc)));/*設(shè)置等距分段數(shù)*/
%let MinBinSize=%sysevalf((&VarMax-&VarMin)/&Mbins);/*每段的長(zhǎng)度*/
/*定義每段后每段的最大最小值*/
%do i=1 %to %eval(&Mbins);
%local Lower_&i Upper_&i;
%let Upper_&i = %sysevalf(&VarMin + &i * &MinBinSize);
%let Lower_&i = %sysevalf(&VarMin + (&i-1)*&MinBinSize);
%end;
%let Lower_1 = %sysevalf(&VarMin-0.0001);
%let Upper_&Mbins=%sysevalf(&VarMax+0.0001);
/*對(duì)連續(xù)變量 income 進(jìn)行等距分段*/
data Temp_DS;
set &DSin;
%do i=1 %to %eval(&Mbins-1);
if &IVVar>=&&Lower_&i and &IVVar < &&Upper_&i Then Bin=&i;
%end;
if &IVVar>=&&Lower_&Mbins and &IVVar <= &&Upper_&MBins Then Bin=&MBins;
run;
/*計(jì)算出等距分段的每段最值*/
data temp_blimits;
%do i=1 %to %Eval(&Mbins-1);
Bin_LowerLimit=&&Lower_&i;
Bin_UpperLimit=&&Upper_&i;
Bin=&i;
output;
%end;
Bin_LowerLimit=&&Lower_&Mbins;
Bin_UpperLimit=&&Upper_&Mbins;
Bin=&Mbins;
output;
run;
proc sort data=temp_blimits;
by Bin;
run;
/*找出每段分段對(duì)應(yīng)的二元自變量每個(gè)類(lèi)別的頻數(shù)*/
proc freq data=Temp_DS noprint;
table Bin*&DVvar /out=Temp_cross;
table Bin /out=Temp_binTot;
run;
proc sort data=temp_cross;
by Bin;
run;
proc sort data= temp_BinTot;
by Bin;
run;
data temp_cont;
merge Temp_cross(rename=count=Ni2 )temp_BinTot(rename=Count=total) temp_BLimits ;/*Ni2:每個(gè)分段下對(duì)應(yīng)類(lèi)別的頻數(shù) total:每個(gè)分段下的總頻數(shù)*/
by Bin;
Ni1=total-Ni2;
PDV1=bin;
label Ni2= total=;
if Ni1=0 then output;
else if &DVVar=1 then output;
drop percent &DVVar;
run;
data temp_contold;
set temp_cont;
run;
/*合并所有含有ni1、ni2 、total= 0 的分段*/
proc sql noprint;
%local mx;
%do i=1 %to &Mbins;
select count(*) into : mx from Temp_cont where Bin=&i;
%if (&mx>0) %then %do;
select Ni1, Ni2, total, bin_lowerlimit, bin_upperlimit into
:Ni1,:Ni2,:total, :bin_lower, :bin_upper
from temp_cont where Bin=&i;
%if (&i=&Mbins) %then %do;
select max(bin) into :i1 from temp_cont where Bin<&Mbins;
%end;
%else %do;
select min(bin) into :i1 from temp_cont where Bin>&i;
%end;
%if (&Ni1=0) or (&Ni2=0) or (&total=0) %then %do;
update temp_cont set
Ni1=Ni1+&Ni1 ,
Ni2=Ni2+&Ni2 ,
total=total+&Total
where bin=&i1;
%if (&i<&Mbins) %then %do;
update temp_cont set Bin_lowerlimit = &Bin_lower where bin=&i1;
%end;
%else %do;
update temp_cont set Bin_upperlimit = &Bin_upper where bin=&i1;
%end;
delete from temp_cont where bin=&i;
%end;
%end;
%end;
quit;
proc sort data=temp_cont;
by pdv1;
run;
%local m;
/*將所有類(lèi)別定義為宏變量m*/
data temp_cont;
set temp_cont;
i=_N_;
Var=bin;
Bin=1;
call symput("m", compress(_N_));
run;
%local Nbins ;
%let Nbins=1;
%DO %WHILE (&Nbins <&MMax);
/*從所有候選分群中根據(jù)熵選擇最優(yōu)分群*/
%CandSplits(temp_cont, Temp_Splits);
Data Temp_Cont;
set Temp_Splits;
run;
%let NBins=%eval(&NBins+1);
%end;
data temp_Map1 ;
set temp_cont(Rename=Var=OldBin);
drop Ni2 PDV1 Ni1 i ;
run;
proc sort data=temp_Map1;
by Bin OldBin ;
run;
data temp_Map2;
retain LL 0 UL 0 BinTotal 0;
set temp_Map1;
by Bin OldBin;
Bintotal=BinTotal+Total;
if first.bin then do;
LL=Bin_LowerLimit;
BinTotal=Total;
End;
if last.bin then do;
UL=Bin_UpperLimit;
output;
end;
drop Bin_lowerLimit Bin_upperLimit Bin OldBin total;
proc sort data=temp_map2;
by LL;
run;
data &DSVarMap;
set temp_map2;
Bin=_N_;
run;
%mend;
數(shù)據(jù)分析咨詢(xún)請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
訓(xùn)練與驗(yàn)證損失驟升:機(jī)器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機(jī)器學(xué)習(xí)模型訓(xùn)練過(guò)程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類(lèi)核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對(duì)數(shù)據(jù)的需求已從 “存儲(chǔ)” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計(jì)基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計(jì)基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語(yǔ)言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢(xún)效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類(lèi)型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專(zhuān)業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專(zhuān)業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶(hù)體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷(xiāo)案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷(xiāo)成為企業(yè)突圍的核心方 ...
2025-09-11