
簡單易學的機器學習算法—Gibbs采樣
一、Gibbs采樣概述
前面介紹的Metropolis-Hastings采樣為從指定分布中進行采樣提供了一個統(tǒng)一的框架,但是采樣的效率依賴于指定的分布的選擇,若是選擇的不好,會使得接受率比較低,大量的采樣被拒絕,影響到整體的收斂速度。
Gibbs采樣是Metropolis-Hastings采樣算法的特殊形式,即找到一個已知的分布,使得接受率α=1。這樣,每次的采樣都會被接受,可以提高MCMC的收斂速度。
二、Gibbs采樣算法的流程
在這部分,先直接給出Gibbs采樣算法的流程,對于Gibbs采樣算法的有效性將在第三部分給出論述,Gibbs采樣算法的具體流程如下所述:
初始化時間t=1
設置u=(u1,u2,?,uN)的值,并初始化初始狀態(tài)Θ(t)=u
重復以下的過程:
令t=t+1
對每一維:i=1,2,?N
直到t=T
Gibbs采樣有一個缺陷,必須知道條件分布。
三、上述過程滿足細致平穩(wěn)條件
為簡單起見,我們假設所需采樣的分布為一個二元分布f(x,y),假設兩個狀態(tài)為(x1,y1)和(x1,y2)。已知:
所以有:
由此可見,Gibbs采樣的過程是滿足細致平穩(wěn)條件的。這里直接取p(y2∣x1)為轉(zhuǎn)移概率,則α=1,可見Gibbs采樣算法是Metropolis-Hastings采樣的特殊形式。
四、實驗
4.1、前提
假設從二項正態(tài)分布中進行采樣,假設Θ=(θ1,θ2),且:
其中
已知:
4.2、流程
初始化時間t=1
設置u=(u1,u2)的值,并初始化初始狀態(tài)Θ(t)=u
重復以下的過程:
令t=t+1
對每一維:i=1,2
直到t=T
4.3、實驗代碼
'''
Date:20160704
@author: zhaozhiyong
'''
import random
import math
import matplotlib.pyplot as plt
def p_ygivenx(x, m1, m2, s1, s2):
return (random.normalvariate(m2 + rho * s2 / s1 * (x - m1), math.sqrt(1 - rho ** 2) * s2))
def p_xgiveny(y, m1, m2, s1, s2):
return (random.normalvariate(m1 + rho * s1 / s2 * (y - m2), math.sqrt(1 - rho ** 2) * s1))
N = 5000
K = 20
x_res = []
y_res = []
m1 = 10
m2 = -5
s1 = 5
s2 = 2
rho = 0.5
y = m2
for i in xrange(N):
for j in xrange(K):
x = p_xgiveny(y, m1, m2, s1, s2)
y = p_ygivenx(x, m1, m2, s1, s2)
x_res.append(x)
y_res.append(y)
num_bins = 50
plt.hist(x_res, num_bins, normed=1, facecolor='green', alpha=0.5)
plt.hist(y_res, num_bins, normed=1, facecolor='red', alpha=0.5)
plt.title('Histogram')數(shù)據(jù)分析師培訓
plt.show()
4.4、實驗結(jié)果
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10