
簡單易學(xué)的機(jī)器學(xué)習(xí)算法—K-Means算法
一、聚類算法的簡介
聚類算法是一種典型的無監(jiān)督學(xué)習(xí)算法,主要用于將相似的樣本自動歸到一個類別中。聚類算法與分類算法最大的區(qū)別是:聚類算法是無監(jiān)督的學(xué)習(xí)算法,而分類算法屬于監(jiān)督的學(xué)習(xí)算法。
在聚類算法中根據(jù)樣本之間的相似性,將樣本劃分到不同的類別中,對于不同的相似度計算方法,會得到不同的聚類結(jié)果,常用的相似度計算方法有歐式距離法。
二、K-Means算法的概述
基本K-Means算法的思想很簡單,事先確定常數(shù)K,常數(shù)K意味著最終的聚類類別數(shù),首先隨機(jī)選定初始點為質(zhì)心,并通過計算每一個樣本與質(zhì)心之間的相似度(這里為歐式距離),將樣本點歸到最相似的類中,接著,重新計算每個類的質(zhì)心(即為類中心),重復(fù)這樣的過程,知道質(zhì)心不再改變,最終就確定了每個樣本所屬的類別以及每個類的質(zhì)心。由于每次都要計算所有的樣本與每一個質(zhì)心之間的相似度,故在大規(guī)模的數(shù)據(jù)集上,K-Means算法的收斂速度比較慢。
三、K-Means算法的流程
初始化常數(shù)K,隨機(jī)選取初始點為質(zhì)心
重復(fù)計算一下過程,直到質(zhì)心不再改變
計算樣本與每個質(zhì)心之間的相似度,將樣本歸類到最相似的類中
重新計算質(zhì)心
輸出最終的質(zhì)心以及每個類
四、K-Means算法的實現(xiàn)
對數(shù)據(jù)集進(jìn)行測試
原始數(shù)據(jù)集
MATLAB代碼
主程序
[plain] view plain copy 在CODE上查看代碼片派生到我的代碼片
%% input the data
A = load('testSet.txt');
%% 計算質(zhì)心
centroids = kMeans(A, 4);
隨機(jī)選取質(zhì)心
[plain] view plain copy 在CODE上查看代碼片派生到我的代碼片
%% 取得隨機(jī)中心
function [ centroids ] = randCent( dataSet, k )
[m,n] = size(dataSet);%取得列數(shù)
centroids = zeros(k, n);
for j = 1:n
minJ = min(dataSet(:,j));
rangeJ = max(dataSet(:,j))-min(dataSet(:,j));
centroids(:,j) = minJ+rand(k,1)*rangeJ;%產(chǎn)生區(qū)間上的隨機(jī)數(shù)
end
end
計算相似性
[plain] view plain copy 在CODE上查看代碼片派生到我的代碼片
function [ dist ] = distence( vecA, vecB )
dist = (vecA-vecB)*(vecA-vecB)';%這里取歐式距離的平方
end
kMeans的主程序
[plain] view plain copy 在CODE上查看代碼片派生到我的代碼片
%% kMeans的核心程序,不斷迭代求解聚類中心
function [ centroids ] = kMeans( dataSet, k )
[m,n] = size(dataSet);
%初始化聚類中心
centroids = randCent(dataSet, k);
subCenter = zeros(m,2);%做一個m*2的矩陣,第一列存儲類別,第二列存儲距離
change = 1;%判斷是否改變
while change == 1
change = 0;
%對每一組數(shù)據(jù)計算距離
for i = 1:m
minDist = inf;
minIndex = 0;
for j = 1:k
dist= distence(dataSet(i,:), centroids(j,:));
if dist < minDist
minDist = dist;
minIndex = j;
end
end
if subCenter(i,1) ~= minIndex
change = 1;
subCenter(i,:)=[minIndex, minDist];
end
end
%對k類重新就算聚類中心
for j = 1:k
sum = zeros(1,n);
r = 0;%數(shù)量
for i = 1:m
if subCenter(i,1) == j
sum = sum + dataSet(i,:);
r = r+1;
end
end
centroids(j,:) = sum./r;
end
end
%% 完成作圖
hold on
for i = 1:m
switch subCenter(i,1)
case 1
plot(dataSet(i,1), dataSet(i,2), '.b');
case 2
plot(dataSet(i,1), dataSet(i,2), '.g');
case 3
plot(dataSet(i,1), dataSet(i,2), '.r');
otherwise
plot(dataSet(i,1), dataSet(i,2), '.c');
end
end
plot(centroids(:,1),centroids(:,2),'+k');
end
最終的聚類結(jié)果
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10