
Python自然語言處理:詞干、詞形與MaxMatch算法
自然語言處理中一個很重要的操作就是所謂的stemming 和 lemmatization,二者非常類似。它們是詞形規(guī)范化的兩類重要方式,都能夠達到有效歸并詞形的目的,二者既有聯(lián)系也有區(qū)別。
1、詞干提?。╯temming)
定義:Stemming is the process for reducing inflected (or sometimes derived) words to their stem, base or root form—generally a written word form.
解釋一下,Stemming 是抽取詞的詞干或詞根形式(不一定能夠表達完整語義)。
NLTK中提供了三種最常用的詞干提取器接口,即 Porter stemmer, Lancaster Stemmer 和 Snowball Stemmer。
Porter Stemmer基于Porter詞干提取算法,來看例子
[python] view plain copy 在CODE上查看代碼片派生到我的代碼片
>>> from nltk.stem.porter import PorterStemmer
>>> porter_stemmer = PorterStemmer()
>>> porter_stemmer.stem(‘maximum’)
u’maximum’
>>> porter_stemmer.stem(‘presumably’)
u’presum’
>>> porter_stemmer.stem(‘multiply’)
u’multipli’
>>> porter_stemmer.stem(‘provision’)
u’provis’
>>> porter_stemmer.stem(‘owed’)
u’owe’
Lancaster Stemmer 基于Lancaster 詞干提取算法,來看例子
[python] view plain copy 在CODE上查看代碼片派生到我的代碼片
>>> from nltk.stem.lancaster import LancasterStemmer
>>> lancaster_stemmer = LancasterStemmer()
>>> lancaster_stemmer.stem(‘maximum’)
‘maxim’
>>> lancaster_stemmer.stem(‘presumably’)
‘presum’
>>> lancaster_stemmer.stem(‘presumably’)
‘presum’
>>> lancaster_stemmer.stem(‘multiply’)
‘multiply’
>>> lancaster_stemmer.stem(‘provision’)
u’provid’
>>> lancaster_stemmer.stem(‘owed’)
‘ow’
Snowball Stemmer基于Snowball 詞干提取算法,來看例子
[python] view plain copy 在CODE上查看代碼片派生到我的代碼片
>>> from nltk.stem import SnowballStemmer
>>> snowball_stemmer = SnowballStemmer(“english”)
>>> snowball_stemmer.stem(‘maximum’)
u’maximum’
>>> snowball_stemmer.stem(‘presumably’)
u’presum’
>>> snowball_stemmer.stem(‘multiply’)
u’multipli’
>>> snowball_stemmer.stem(‘provision’)
u’provis’
>>> snowball_stemmer.stem(‘owed’)
u’owe’
2、詞形還原(lemmatization)
定義:Lemmatisation (or lemmatization) in linguistics, is the process of grouping together the different inflected forms of a word so they can be analysed as a single item.
可見,Lemmatisation是把一個任何形式的語言詞匯還原為一般形式(能表達完整語義)。相對而言,詞干提取是簡單的輕量級的詞形歸并方式,最后獲得的結(jié)果為詞干,并不一定具有實際意義。詞形還原處理相對復(fù)雜,獲得結(jié)果為詞的原形,能夠承載一定意義,與詞干提取相比,更具有研究和應(yīng)用價值。
我們會在后面給出一個同MaxMatch算法相結(jié)合的更為復(fù)雜的例子。
3、最大匹配算法(MaxMatch)
MaxMatch算法在中文自然語言處理中常常用來進行分詞(或許從名字上你已經(jīng)能想到它是基于貪婪策略設(shè)計的一種算法)。通常,英語中一句話里的各個詞匯之間通過空格來分割,這是非常straightforward的,但是中文卻沒有這個遍歷。例如“我愛中華人民共和國”,這句話被分詞的結(jié)果可能是這樣的{‘我’,‘愛’,‘中華’,‘人民’,‘共和國’},又或者是{‘我’,‘愛’,‘中華人民共和國’},顯然我們更傾向于后者的分詞結(jié)果。因為‘中華人民共和國’顯然是一個專有名詞(把這樣一個詞分割來看顯然并不明智)。我們選擇后者的策略就是所謂的MaxMatch,即最大匹配。因為‘中華人民共和國’這個詞顯然要比‘中華’,‘人民’,‘共和國’這些詞都長。
我們可以通過一個英文的例子來演示MaxMatch算法(其實中文處理的道理也是一樣的)。算法從右側(cè)開始逐漸減少字符串長度,以此求得可能匹配的最大長度的字符串??紤]到我們所獲得的詞匯可能包含有某種詞型的變化,所以其中使用了Lemmatisation,然后在詞庫里進行匹配查找。數(shù)據(jù)分析師培訓(xùn)
[python] view plain copy 在CODE上查看代碼片派生到我的代碼片
from nltk.stem import WordNetLemmatizer
from nltk.corpus import words
wordlist = set(words.words())
wordnet_lemmatizer = WordNetLemmatizer()
def max_match(text):
pos2 = len(text)
result = ''
while len(text) > 0:
word = wordnet_lemmatizer.lemmatize(text[0:pos2])
if word in wordlist:
result = result + text[0:pos2] + ' '
text = text[pos2:]
pos2 = len(text)
else:
pos2 = pos2-1
return result[0:-1]
來看看算法的實現(xiàn)效果
[python] view plain copy 在CODE上查看代碼片派生到我的代碼片
>>> string = 'theyarebirds'
>>> print(max_match(string))
they are birds
當(dāng)然,上述代碼尚有一個不足,就是當(dāng)字符串中存在非字母字符時(例如數(shù)字標(biāo)點等),它可能會存在一些問題。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03