
這里我們創(chuàng)建一個(gè)DataFrame
命名為df
:
import numpy as np
import pandas as pd
d = np.array([[81, 28, 24, 25, 96],
[ 8, 35, 56, 98, 39],
[13, 39, 55, 36, 3],
[70, 54, 69, 48, 12],
[63, 80, 97, 25, 70]])
df = pd.DataFrame(data = d,
columns=list('abcde'))
df
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
1 | 8 | 35 | 56 | 98 | 39 |
2 | 13 | 39 | 55 | 36 | 3 |
3 | 70 | 54 | 69 | 48 | 12 |
4 | 63 | 80 | 97 | 25 | 70 |
查看前n行
df.head(2)
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
1 | 8 | 35 | 56 | 98 | 39 |
查看后n行
df.tail(2)
a | b | c | d | e | |
---|---|---|---|---|---|
3 | 70 | 54 | 69 | 48 | 12 |
4 | 63 | 80 | 97 | 25 | 70 |
查看隨機(jī)N行
df.sample(2)
a | b | c | d | e | |
---|---|---|---|---|---|
1 | 8 | 35 | 56 | 98 | 39 |
3 | 70 | 54 | 69 | 48 | 12 |
單列選取,我們有3種方式可以實(shí)現(xiàn)
第一種,直接在[]
里面寫(xiě)上要篩選的列名
df['a']
0 81
1 8
2 13
3 70
4 63
Name: a, dtype: int64
第二種,在.iloc[]
里的,
前面寫(xiě)上要篩選的行索引,在,
后面寫(xiě)上要篩選的列索引。其中:
代表所有,0:3
代表從索引0到2
df.iloc[0:3,0]
0 81
1 8
2 13
Name: a, dtype: int64
第三種,直接.
后面寫(xiě)上列名
df.a
0 81
1 8
2 13
3 70
4 63
Name: a, dtype: int64
同樣的,選擇多列常見(jiàn)的也有3種方式:
第一種,直接在[]
里面寫(xiě)上要篩選的列名組成的列表['a','c','d']
df[['a','c','d']]
a | c | d | |
---|---|---|---|
0 | 81 | 24 | 25 |
1 | 8 | 56 | 98 |
2 | 13 | 55 | 36 |
3 | 70 | 69 | 48 |
4 | 63 | 97 | 25 |
第二種,在.iloc[]
里面行索引位置寫(xiě):
選取所有行,列索引位置寫(xiě)上要篩選的列索引組成的列表[0,2,3]
df.iloc[:,[0,2,3]]
a | c | d | |
---|---|---|---|
0 | 81 | 24 | 25 |
1 | 8 | 56 | 98 |
2 | 13 | 55 | 36 |
3 | 70 | 69 | 48 |
4 | 63 | 97 | 25 |
第三種,在.loc[]
里面的行索引位置寫(xiě):
來(lái)選取所有行,在列索引位置寫(xiě)上要篩選的列索引組成的列表['a','c','d']
df.loc[:,['a','c','d']]
a | c | d | |
---|---|---|---|
0 | 81 | 24 | 25 |
1 | 8 | 56 | 98 |
2 | 13 | 55 | 36 |
3 | 70 | 69 | 48 |
4 | 63 | 97 | 25 |
直接選取第一行
df[0:1]
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
用loc
選取第一行
df.loc[0:0]
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
選取任意多行
df.iloc[[1,3],]
a | b | c | d | e | |
---|---|---|---|---|---|
1 | 8 | 35 | 56 | 98 | 39 |
3 | 70 | 54 | 69 | 48 | 12 |
選取連續(xù)多行
df.iloc[1:4,:]
a | b | c | d | e | |
---|---|---|---|---|---|
1 | 8 | 35 | 56 | 98 | 39 |
2 | 13 | 39 | 55 | 36 | 3 |
3 | 70 | 54 | 69 | 48 | 12 |
指定行列值
df.iat[2,2] # 根據(jù)行列索引
55
df.at[2,'c'] # 根據(jù)行列名稱
55
指定行列區(qū)域
df.iloc[[2,3],[1,4]]
b | e | |
---|---|---|
2 | 39 | 3 |
3 | 54 | 12 |
以上是關(guān)于如何查看一個(gè)DataFrame里的數(shù)據(jù),包括用[]
、iloc
、iat
等方式選取數(shù)據(jù),接下來(lái)我們來(lái)看如何用條件表達(dá)式來(lái)篩選數(shù)據(jù):
下一節(jié) 《第2節(jié) 4 Pandas數(shù)據(jù)查看》
這里分享一個(gè)你一定用得到的小程序——CDA數(shù)據(jù)分析師考試小程序。 它是專為CDA數(shù)據(jù)分析認(rèn)證考試報(bào)考打造的一款小程序??梢詭湍憧焖賵?bào)名考試、查成績(jī)、查證書(shū)、查積分,通過(guò)該小程序,考生可以享受更便捷的服務(wù)。 掃碼加入CDA小程序,與圈內(nèi)考生一同學(xué)習(xí)、交流、進(jìn)步!
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門(mén)控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書(shū)考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開(kāi)啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03