
大數(shù)據(jù)技術(shù)面臨的三個重要問題
如何利用信息技術(shù)等手段處理非結(jié)構(gòu)化數(shù)據(jù)
大數(shù)據(jù)中,結(jié)構(gòu)化數(shù)據(jù)只占 15%左右,其余的 85%都是非結(jié)構(gòu)化的數(shù)據(jù),它們大量存在于社交網(wǎng)絡(luò)、互聯(lián)網(wǎng)和電子商務(wù)等領(lǐng)域。另一方面,也許有 90%的數(shù)據(jù)來自開源數(shù)據(jù),其余的被存儲在數(shù)據(jù)庫中。大數(shù)據(jù)的不確定性表現(xiàn)在高維、多變和強(qiáng)隨機(jī)性等方面。股票交易數(shù)據(jù)流是不確定性大數(shù)據(jù)的一個典型例子。
大數(shù)據(jù)刺激了大量研究問題。非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)的個體表現(xiàn)、一般性特征和基本原理尚不清晰,這些都需要通過包括數(shù)學(xué)、經(jīng)濟(jì)學(xué)、社會學(xué)、計(jì)算機(jī)科學(xué)和管理科學(xué)在內(nèi)的多學(xué)科交叉來研究和討論。給定一種半結(jié)構(gòu)化或非結(jié)構(gòu)化數(shù)據(jù),比如圖像,如何把它轉(zhuǎn)化成多維數(shù)據(jù)表、面向?qū)ο蟮臄?shù)據(jù)模型或者直接基于圖像的數(shù)據(jù)模型?值得注意的是,大數(shù)據(jù)每一種表示形式都僅呈現(xiàn)數(shù)據(jù)本身的側(cè)面表現(xiàn),并非全貌。
如果把通過數(shù)據(jù)挖掘提取 “粗糙知識” 的過程稱為 “一次挖掘” 過程,那么將粗糙知識與被量化后主觀知識,包括具體的經(jīng)驗(yàn)、常識、本能、情境知識和用戶偏好,相結(jié)合而產(chǎn)生“智能知識”過程就叫做“二次挖掘”。從“一次挖掘”到“二次挖掘”類似事物“量”到“質(zhì)” 的飛躍。
由于大數(shù)據(jù)所具有的半結(jié)構(gòu)化和非結(jié)構(gòu)化特點(diǎn),基于數(shù)據(jù)挖掘所產(chǎn)生的結(jié)構(gòu)化的 “粗糙知識”(潛在模式)也伴有一些新的特征。這些結(jié)構(gòu)化的粗糙知識可以被主觀知識加工處理并轉(zhuǎn)化,生成半結(jié)構(gòu)化和非結(jié)構(gòu)化的智能知識。尋求 “智能知識” 反映了大數(shù)據(jù)研究的核心價值。
2如何探索大數(shù)據(jù)特征描述刻畫方法及系統(tǒng)建模
這一問題的突破是實(shí)現(xiàn)大數(shù)據(jù)知識發(fā)現(xiàn)的前提和關(guān)鍵。從長遠(yuǎn)角度來看,依照大數(shù)據(jù)的個體復(fù)雜性和隨機(jī)性所帶來的挑戰(zhàn)將促使大數(shù)據(jù)數(shù)學(xué)結(jié)構(gòu)的形成,從而導(dǎo)致大數(shù)據(jù)統(tǒng)一理論的完備。從短期而言,學(xué)術(shù)界鼓勵發(fā)展一種一般性的結(jié)構(gòu)化數(shù)據(jù)和半結(jié)構(gòu)化、非結(jié)構(gòu)化數(shù)據(jù)之間的轉(zhuǎn)化原則,以支持大數(shù)據(jù)的交叉工業(yè)應(yīng)用。管理科學(xué),尤其是基于最優(yōu)化的理論將在發(fā)展大數(shù)據(jù)知識發(fā)現(xiàn)的一般性方法和規(guī)律性中發(fā)揮重要的作用。
大數(shù)據(jù)的復(fù)雜形式導(dǎo)致許多對 “粗糙知識” 的度量和評估相關(guān)的研究問題。已知的最優(yōu)化、數(shù)據(jù)包絡(luò)分析、期望理論、管理科學(xué)中的效用理論可以被應(yīng)用到研究如何將主觀知識融合到數(shù)據(jù)挖掘產(chǎn)生的粗糙知識的 “二次挖掘” 過程中。這里人機(jī)交互將起到至關(guān)重要的作用。
3數(shù)據(jù)與決策異構(gòu)性的關(guān)系對知識發(fā)現(xiàn)與決策的影響
由于大數(shù)據(jù)本身的復(fù)雜性,這一問題無疑是一個重要的科研課題,對傳統(tǒng)的數(shù)據(jù)挖掘理論和技術(shù)提出了新的挑戰(zhàn)。在大數(shù)據(jù)環(huán)境下,管理決策面臨著兩個 “異構(gòu)性” 問題:“數(shù)據(jù)異構(gòu)性” 和 “決策異構(gòu)性”。傳統(tǒng)的管理決定模式取決于對業(yè)務(wù)知識的學(xué)習(xí)和日益積累的實(shí)踐經(jīng)驗(yàn),而管理決策又是以數(shù)據(jù)分析為基礎(chǔ)的。
大數(shù)據(jù)已經(jīng)改變了傳統(tǒng)的管理決策結(jié)構(gòu)的模式。研究大數(shù)據(jù)對管理決策結(jié)構(gòu)的影響會成為一個公開的科研問題。除此之外,決策結(jié)構(gòu)的變化要求人們?nèi)ヌ接懭绾螢橹С指邔哟蔚臎Q策而去做 “二次挖掘”。無論大數(shù)據(jù)帶來了哪種數(shù)據(jù)異構(gòu)性,大數(shù)據(jù)中的 “粗糙知識” 仍可被看作 “一次挖掘” 的范疇。通過尋找 “二次挖掘” 產(chǎn)生的 “智能知識” 來作為數(shù)據(jù)異構(gòu)性和決策異構(gòu)性之間的橋梁是十分必要的。探索大數(shù)據(jù)環(huán)境下決策結(jié)構(gòu)是如何被改變的,相當(dāng)于研究如何將決策者的主觀知識參與到?jīng)Q策的過程中。
大數(shù)據(jù)是一種具有隱藏法則的人造自然,尋找大數(shù)據(jù)的科學(xué)模式將帶來對研究大數(shù)據(jù)之美的一般性方法的探究,盡管這樣的探索十分困難,但是如果我們找到了將非結(jié)構(gòu)化、半結(jié)構(gòu)化數(shù)據(jù)轉(zhuǎn)化成結(jié)構(gòu)化數(shù)據(jù)的方法,已知的數(shù)據(jù)挖掘方法將成為大數(shù)據(jù)挖掘的工具。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10