
現(xiàn)代商業(yè)中大數(shù)據(jù)的價值體現(xiàn)在哪
大數(shù)據(jù)最大的價值不是事后分析,而是預(yù)測和推薦我們可以看到”精準(zhǔn)推薦”在電商中的運用,預(yù)測性分析成為大數(shù)據(jù)在零售業(yè)的主流。
服裝網(wǎng)站Stitch Fix例子,在個性化推薦機制方面,大多數(shù)服裝訂購網(wǎng)站采用的都是用戶提交身形、風(fēng)格數(shù)據(jù)+編輯人工推薦的模式,Stitch Fix不一樣的地方在于它還結(jié)合了機器算法推薦。這些顧客提供的身材比例,主觀數(shù)據(jù),加上銷售記錄的交叉核對,挖掘每個人專屬的服裝推薦模型。 這種一對一營銷是最好的服務(wù)。
數(shù)據(jù)整合改變了企業(yè)的營銷方式,現(xiàn)在經(jīng)驗已經(jīng)不再是單純地人去一步步試錯,而是通過消費者的行為數(shù)據(jù)做推薦,幫助有經(jīng)驗的營銷人員進(jìn)行更高效準(zhǔn)確的決策。未來,銷售人員不再只是銷售人員,而能以專業(yè)的數(shù)據(jù)預(yù)測,搭配人性的親切互動推薦商品,升級成為顧問型銷售。
下面舉個例子說明精準(zhǔn)營銷的好處。
如果你打算搜集200份有效問卷,依照以往的經(jīng)驗,你需要發(fā)多少份問卷,才能達(dá)到這個目標(biāo)?預(yù)計用多少預(yù)算和時間來執(zhí)行?
以往的方法是這樣的:評估網(wǎng)絡(luò)問卷大約是5%的回收率,想要保證收到200份的問卷,就必須有20倍的發(fā)送量,也就是發(fā)出4000份問卷,一個月內(nèi)如果可以回收,就是不錯的表現(xiàn)。
但現(xiàn)在不一樣了,在執(zhí)行大數(shù)據(jù)分析的3小時內(nèi),就可以輕松完成以下的目標(biāo):
1. 精準(zhǔn)挑選出1%的VIP顧客
2. 發(fā)送390份問卷,全部回收
3. 問卷寄出3小時內(nèi)回收35%的問卷
4. 5天內(nèi)就回收了超過目標(biāo)數(shù)86%的問卷數(shù)
5. 所需時間和預(yù)算都在以往的10%以下
怎么做到在問卷發(fā)送后的3個小時就回收35%? 因為數(shù)據(jù)做到了發(fā)送時間的”一對一定制化”,利用數(shù)據(jù)得出,A先生最可能在什么時間打開郵件就在那個時間點發(fā)送問卷。
比如有些人在上班路上會打開郵件,但如果是開車族,并沒有時間填寫答案,而搭乘公共交通工具的人,上班路上的時間會玩手機,填寫答案的概率就高,這些都是數(shù)據(jù)細(xì)分受眾的好處。
生成用戶的精準(zhǔn)畫像大致分成三步:
1 采集和清理數(shù)據(jù):用已知預(yù)測未知
首先要掌握繁雜的數(shù)據(jù)源。包括用戶數(shù)據(jù)、各式活動數(shù)據(jù)、電子郵件訂閱數(shù)、線上或線下數(shù)據(jù)庫及客戶服務(wù)信息等。這個是累積數(shù)據(jù)庫;這里面最基礎(chǔ)的就是如何收集網(wǎng)站/APP用戶行為數(shù)據(jù)。
比如當(dāng)你登陸某網(wǎng)站,這個Cookie就一直駐留在瀏覽器中,當(dāng)用戶觸及的動作,點擊的位置,按鈕,點贊,評論,粉絲,還有訪問的路徑,可以識別并記錄他/她的所有瀏覽行為,然后持續(xù)分析瀏覽過的關(guān)鍵詞和頁面,分析出他的短期需求和長期興趣。還可以通過分析朋友圈,獲得非常清晰獲得對方的工作,愛好,教育等方面,這比個人填寫的表單,還要更全面和真實。
我們用已知的數(shù)據(jù)尋找線索,不斷挖掘素材,不但可以鞏固老會員,也可以分析出未知的顧客與需求,進(jìn)一步開發(fā)市場。
2 用戶分群:分門別類貼標(biāo)簽
描述分析是最基本的分析統(tǒng)計方法,描述統(tǒng)計分為兩大部分:數(shù)據(jù)描述和指標(biāo)統(tǒng)計。
數(shù)據(jù)描述:用來對數(shù)據(jù)進(jìn)行基本情況的刻畫,包括數(shù)據(jù)總數(shù),范圍,數(shù)據(jù)來源。
指標(biāo)統(tǒng)計:把分布,對比,預(yù)測指標(biāo)進(jìn)行建模。這里常常是Data mining的一些數(shù)學(xué)模型,像響應(yīng)率分析模型,客戶傾向性模型,這類分群使用Lift圖,用打分的方法告訴你哪一類客戶有較高的接觸和轉(zhuǎn)化的價值。
在分析階段,數(shù)據(jù)會轉(zhuǎn)換為影響指數(shù),進(jìn)而可以做”一對一”的精準(zhǔn)營銷。比如一個80后客戶喜歡在生鮮網(wǎng)站上早上10點下單買菜,晚上6點回家做飯,周末喜歡去附近吃日本料理,經(jīng)過搜集與轉(zhuǎn)換,就會產(chǎn)生一些標(biāo)簽,包括”80后””生鮮””做飯””日本料理”等等,貼在消費者身上。
3 制定策略:優(yōu)化再調(diào)整
有了用戶畫像之后,便能清楚了解需求,在實際操作上,能深度經(jīng)營顧客關(guān)系,甚至找到擴(kuò)散口碑的機會。例如上面例子中,若有生鮮的打折券,日本餐館最新推薦,營銷人員就會把適合產(chǎn)品的相關(guān)信息,精準(zhǔn)推送這個消費者的手機中;針對不同產(chǎn)品發(fā)送推薦信息,同時也不斷通過滿意度調(diào)查,跟蹤碼確認(rèn)等方式,掌握顧客各方面的行為與偏好。
除了顧客分群之外,營銷人員也在不同時間階段觀察成長率和成功率,前后期對照,確認(rèn)整體經(jīng)營策略與方向是否正確;若效果不佳,又該用什么策略應(yīng)對。反復(fù)試錯并調(diào)整模型,做到循環(huán)優(yōu)化。
這個階段的目的是提煉價值,再根據(jù)客戶需求精準(zhǔn)營銷,最后追蹤客戶反饋的信息,完成閉環(huán)優(yōu)化。
我們從數(shù)據(jù)整合導(dǎo)入開始,聚合數(shù)據(jù),在進(jìn)行數(shù)據(jù)的分析挖掘。數(shù)據(jù)分析和挖掘還是有一些區(qū)別。數(shù)據(jù)分析重點是觀察數(shù)據(jù),單純的統(tǒng)計,看KPI的升降原因。而數(shù)據(jù)挖掘從細(xì)微和模型角度去研究數(shù)據(jù),從學(xué)習(xí)集,訓(xùn)練集發(fā)現(xiàn)知識規(guī)則,
除了一些比較商業(yè)化的軟件SAS,WEKA功能強大的數(shù)據(jù)分析挖掘軟件,這邊還是更推薦使用R,Python。由于SAS,SPSS本身比較昂貴,很難做頁面和服務(wù)級別的API,而Python和R有豐富的庫,可以類似WEKA的模塊,無縫交互其他API和程序,這里還需要熟悉數(shù)據(jù)庫,Hadoop等。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03