
在SQL中,查詢每個月的員工入職總數(shù)并按照入職總數(shù)排序是一個非常基本的數(shù)據(jù)分析需求。這種查詢可以幫助您了解每個月公司招聘的情況,以及了解到公司業(yè)務(wù)增長和下降的趨勢。在本文中,我們將介紹如何使用SQL查詢每個月的員工入職總數(shù),并按入職總數(shù)排序。
首先,我們需要有一個包含員工信息的數(shù)據(jù)表。假設(shè)我們的數(shù)據(jù)表名為employees
,其中包含以下列:
employee_id
:員工唯一標(biāo)識符first_name
:員工名字last_name
:員工姓氏hire_date
:員工入職日期如果您還沒有這樣的數(shù)據(jù)表,請創(chuàng)建它并填充一些示例數(shù)據(jù)。以下是一個示例查詢,用于創(chuàng)建和填充此數(shù)據(jù)表:
CREATE TABLE employees (
employee_id INT PRIMARY KEY,
first_name VARCHAR(50) NOT NULL,
last_name VARCHAR(50) NOT NULL,
hire_date DATE NOT NULL
);
INSERT INTO employees (employee_id, first_name, last_name, hire_date)
VALUES
(1, 'Alice', 'Smith', '2022-01-01'),
(2, 'Bob', 'Johnson', '2022-01-02'),
(3, 'Charlie', 'Brown', '2022-02-01'),
(4, 'David', 'Lee', '2022-03-01'),
(5, 'Emily', 'Wang', '2022-03-15'),
(6, 'Frank', 'Chen', '2022-04-01'),
(7, 'Grace', 'Huang', '2022-05-01'),
(8, 'Henry', 'Zhang', '2022-05-15'),
(9, 'Isabella', 'Liu', '2022-06-01'),
(10, 'Jack', 'Zhao', '2022-06-15');
現(xiàn)在我們已經(jīng)有了一個包含示例數(shù)據(jù)的數(shù)據(jù)表,我們可以開始查詢每個月的員工入職總數(shù)并按入職總數(shù)排序。
首先,我們需要從employees
表中選擇hire_date
列和COUNT(*)
函數(shù)。使用GROUP BY
子句將結(jié)果分組為每個月:
SELECT DATE_FORMAT(hire_date, '%Y-%m') AS month,
COUNT(*) AS count
FROM employees
GROUP BY DATE_FORMAT(hire_date, '%Y-%m');
此查詢將返回以下結(jié)果:
+---------+-------+
| month | count |
+---------+-------+
| 2022-01 | 2 |
| 2022-02 | 1 |
| 2022-03 | 2 |
| 2022-04 | 1 |
| 2022-05 | 2 |
| 2022-06 | 2 |
+---------+-------+
這里我們使用了MySQL的DATE_FORMAT
函數(shù)來將日期格式化為"YYYY-MM"格式的字符串。在查詢中,我們將該函數(shù)用于hire_date
列,并將其重命名為month
,以便更好地描述結(jié)果。
現(xiàn)在,我們已經(jīng)獲得了每個月的員工入職總數(shù),但這還不夠。為了回答原始問題,我們需要按照入職總數(shù)對結(jié)果進(jìn)行排序。為此,我們可以使用ORDER BY
子句:
SELECT DATE_FORMAT(hire_date, '%Y-%m') AS month,
COUNT(*) AS count
FROM employees
GROUP BY DATE_FORMAT(hire_date, '%Y-%m')
ORDER BY count DESC;
在上面的查詢中,我們將結(jié)果按count
列(即每個月的員工入職總數(shù))降序排序,以便最高的入職總數(shù)排在最前面。執(zhí)行此查詢將返回以下結(jié)果:
+---------+-------+
| month | count |
+---------+-------+
| 2022-01 | 2 |
| 2022-03 | 2 |
| 2022-05 | 2 |
| 2022-06 | 2 | | 2022-02 | 1 | | 2022-04 | 1 | +---------+-------+
現(xiàn)在,我們已經(jīng)成功查詢了每個月的員工入職總數(shù),并按入職總數(shù)排序。這些結(jié)果可以為公司提供有關(guān)員工招聘情況的有用信息,以便更好地進(jìn)行人力資源規(guī)劃和業(yè)務(wù)決策。
除了上面提到的MySQL函數(shù)`DATE_FORMAT`之外,大多數(shù)DBMS(如Oracle、SQL Server等)都提供了類似的功能來對日期進(jìn)行格式化。因此,您可以根據(jù)自己使用的數(shù)據(jù)庫系統(tǒng),使用適當(dāng)?shù)暮瘮?shù)。
總之,在SQL中,查詢每個月的員工入職總數(shù)并按入職總數(shù)排序是一個基礎(chǔ)的數(shù)據(jù)分析需求。通過使用GROUP BY子句和COUNT函數(shù),我們可以輕松地獲得每個月的員工入職總數(shù)。使用ORDER BY子句,我們可以根據(jù)入職總數(shù)排序結(jié)果,以使最高入職總數(shù)的月份排在最前面。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10