
隨著時間序列分析的普及,LSTM 成為了深度學習中最常用的工具之一。它以其優(yōu)異的性能和對數據的自適應特征提取而聞名。然而,在實際應用中,我們通常需要通過多變量來預測未來時間序列數據。本文將介紹如何使用多變量 LSTM 模型來進行時間序列預測,并且給出一個例子來預測未來一周的氣溫。
首先,我們需要準備數據集。在本例中,我們將使用包含多個變量的天氣數據。這些變量包括溫度、濕度、風速、降雨量等。我們將選取最近一年的數據,將其前80%作為訓練集,后20%作為測試集。
接下來,我們需要對數據進行歸一化處理。由于不同變量之間的值域差異較大,我們需要將其進行縮放到一個相同的范圍內。這里我們將使用 Scikit-Learn 庫中的MinMaxScaler函數。
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
train_data = scaler.fit_transform(train_data)
test_data = scaler.transform(test_data)
接下來,我們需要將數據轉換成適合 LSTM 模型的格式。在多變量情況下,我們需要將每個時刻的輸入向量擴展到包含多個變量。這里我們將以過去 30 天的數據為輸入,預測未來一周的氣溫。
import numpy as np def create_dataset(X, y, time_steps=1):
Xs, ys = [], [] for i in range(len(X) - time_steps):
v = X[i:i + time_steps]
Xs.append(v)
ys.append(y[i + time_steps]) return np.array(Xs), np.array(ys)
TIME_STEPS = 30 X_train, y_train = create_dataset(train_data, train_data[:, 0], TIME_STEPS)
X_test, y_test = create_dataset(test_data, test_data[:, 0], TIME_STEPS)
接下來,我們可以構建 LSTM 模型。在本例中,我們將使用兩層 LSTM 和一個全連接層。模型的輸入形狀應該是(samples, time_steps, features)。
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM
model = Sequential([
LSTM(units=64, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True),
LSTM(units=32, return_sequences=False),
Dense(units=1)])
在訓練模型之前,我們需要定義損失函數和優(yōu)化器,并編譯模型。
model.compile(loss='mean_squared_error', optimizer='adam')
現在,我們可以開始訓練模型。在每個 epoch 后,我們將記錄訓練集和測試集上的損失值,并可視化它們的變化。
history = model.fit(
X_train, y_train,
epochs=50,
batch_size=16,
validation_split=0.1,
verbose=1,
shuffle=False) import matplotlib.pyplot as plt
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend()
plt.show()
在模型訓練完成后,我們可以對測試集進行預測,并將預測結果與真實值進行比較。
y_pred = model.predict(X_test)
plt.plot(y_test, label='true')
plt.plot(y_pred, label='predicted')
plt.legend()
plt.show()
最后,我們將使用訓練好的模型來預測未來一周的氣溫。首先,我們需要獲取最近 30 天的數據,然后使用模型進行預測。每次預測完之后,我們將新的預測值添加到輸入序列中,用于下一次的預測。
X_last30
= test_data[-TIME_STEPS:] forecast = [] for i in range(7): y_pred_one = model.predict(X_last30.reshape(1, TIME_STEPS, -1)) forecast.append(y_pred_one[0, 0]) X_last30 = np.vstack((X_last30[1:], y_pred_one))
forecast = scaler.inverse_transform(np.array(forecast).reshape(-1, 1))
以上便是使用多變量 LSTM 進行時間序列預測的整個流程。通過訓練模型,我們可以獲得對未來數據的預測結果,并且不僅僅考慮了單一變量的影響,而是綜合了多個變量的影響。當然,這只是一個簡單的例子,實際應用中可能會涉及到更加復雜的數據和模型。
相信讀完上文,你對算法已經有了全面認識。若想進一步探索機器學習的前沿知識,強烈推薦機器學習之半監(jiān)督學習課程。
學習入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵蓋核心算法,結合多領域實戰(zhàn)案例,還會持續(xù)更新,無論是新手入門還是高手進階都很合適。趕緊點擊鏈接開啟學習吧!
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數據處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數據庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數據分析師:表結構數據 “獲取 - 加工 - 使用” 全流程的賦能者 表結構數據(如數據庫表、Excel 表、CSV 文件)是企業(yè)數字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數據分析師:解鎖表結構數據特征價值的專業(yè)核心 表結構數據(以 “行 - 列” 規(guī)范存儲的結構化數據,如數據庫表、Excel 表、 ...
2025-09-17Excel 導入數據含缺失值?詳解 dropna 函數的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數據時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數據分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數據差異是否 “ ...
2025-09-16CDA 數據分析師:掌控表格結構數據全功能周期的專業(yè)操盤手 表格結構數據(以 “行 - 列” 存儲的結構化數據,如 Excel 表、數據 ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數據分析師:激活表格結構數據價值的核心操盤手 表格結構數據(如 Excel 表格、數據庫表)是企業(yè)最基礎、最核心的數據形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數據爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數據的科學計數法問題 為幫助 Python 數據從業(yè)者解決pd.read_csv讀取長浮點數據時的科學計數法問題 ...
2025-09-12CDA 數據分析師:業(yè)務數據分析步驟的落地者與價值優(yōu)化者 業(yè)務數據分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數據把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數據驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數據分析師與戰(zhàn)略 / 業(yè)務數據分析:概念辨析與協(xié)同價值 在數據驅動決策的體系中,“戰(zhàn)略數據分析”“業(yè)務數據分析” 是企業(yè) ...
2025-09-11Excel 數據聚類分析:從操作實踐到業(yè)務價值挖掘 在數據分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數據中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數據解讀到決策支撐的價值導向 統(tǒng)計模型作為數據分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10