
PyTorch是一個廣泛使用的深度學(xué)習(xí)框架,提供了豐富的工具和函數(shù)來構(gòu)建和訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型。其中,model.eval()
是一個重要的函數(shù),用于將模型轉(zhuǎn)換為評估模式。該函數(shù)會影響到模型中的一些關(guān)鍵函數(shù),如前向傳播、Dropout、Batch Normalization等,下面我們將詳細(xì)解釋這些影響。
前向傳播
在訓(xùn)練時,模型需要計算每個樣本的預(yù)測值,并通過損失函數(shù)反向傳播誤差,更新模型參數(shù)。而在評估時,我們只需要計算每個樣本的預(yù)測值,因此不需要進(jìn)行反向傳播。為了減少計算量和內(nèi)存消耗,PyTorch中的model.eval()
會關(guān)閉自動求導(dǎo)功能(torch.no_grad()
),使前向傳播計算更加高效。
Dropout
Dropout是一種常用的正則化方法,通過在訓(xùn)練過程中隨機(jī)將一些神經(jīng)元的輸出置為0,從而減少過擬合風(fēng)險。然而,在評估時,我們需要使用所有的神經(jīng)元進(jìn)行預(yù)測,因此不能再使用Dropout。在PyTorch中,model.eval()
會將所有的Dropout層設(shè)置為“關(guān)閉狀態(tài)”,即將其dropout概率設(shè)置為0。這樣可以確保模型在評估時不會產(chǎn)生隨機(jī)性。
Batch Normalization
Batch Normalization是另一種常用的正則化方法,通過對每個批次數(shù)據(jù)進(jìn)行歸一化,從而加速模型收斂和提高泛化能力。在評估時,由于沒有批次數(shù)據(jù)可用于計算均值和方差,因此需要使用整個數(shù)據(jù)集的均值和方差。在PyTorch中,model.eval()
會將所有的Batch Normalization層設(shè)置為“固定狀態(tài)”,即使用所有訓(xùn)練數(shù)據(jù)的均值和方差進(jìn)行歸一化。這樣可以確保模型在評估時輸出的結(jié)果與訓(xùn)練時一致。
除了上述三種影響,model.eval()
還會影響以下函數(shù):
Dropout2d/Dropout3d
這些函數(shù)與Dropout類似,但是是應(yīng)用于二維或三維張量的情況。在評估時,model.eval()
也會將這些函數(shù)的dropout概率設(shè)置為0。
BatchNorm1d/BatchNorm2d/BatchNorm3d
這些函數(shù)分別對應(yīng)于一維、二維和三維數(shù)據(jù)的Batch Normalization。在評估時,model.eval()
會使用所有訓(xùn)練數(shù)據(jù)的均值和方差進(jìn)行歸一化。
總之,model.eval()
是一個非常重要的函數(shù),用于將PyTorch模型轉(zhuǎn)換為評估模式。它會關(guān)閉自動求導(dǎo)功能、將Dropout和Batch Normalization的狀態(tài)設(shè)置為固定值等,以確保模型在評估時輸出正確的結(jié)果。因此,在使用PyTorch進(jìn)行模型評估時,務(wù)必要記得調(diào)用model.eval()
函數(shù)。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10